Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001077

RESUMO

The triboelectric nanogenerator (TENG), as a novel energy harvesting technology, has garnered widespread attention. As a relatively young field in nanogenerator research, investigations into various aspects of the TENG are still ongoing. This review summarizes the development and dissemination of the fundamental principles of triboelectricity generation. It outlines the evolution of triboelectricity principles, ranging from the fabrication of the first TENG to the selection of triboelectric materials and the confirmation of the electron cloud overlapping model. Furthermore, recent advancements in TENG application scenarios are discussed from four perspectives, along with the research progress in performance optimization through three primary approaches, highlighting their respective strengths and limitations. Finally, the paper addresses the major challenges hindering the practical application and widespread adoption of TENGs, while also providing insights into future developments. With continued research on the TENG, it is expected that these challenges can be overcome, paving the way for its extensive utilization in various real-world scenarios.

2.
J Tribol ; 138(3): 0313021-3130211, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27303112

RESUMO

A combination technology of the solid lubricant and the laser surface texturing (LST) can significantly improve the tribological properties of friction pairs. The plate sample was textured by fiber laser and composite lubricant of polyimide (PI) and molybdenum disulfide (MoS2) powders were filled in the microdimples. Sliding friction performances of micron-sized composite lubricant and nano-sized composite lubricant were investigated by ring-plate tribometer at temperatures ranging from room temperature (RT) to 400 °C. On the one hand, the results of the micron-sized composite lubricant show that the friction coefficient of the textured surface filled with composite lubricant (TS) exhibits the lowest level and the highest stability compared to a textured surface without solid lubrication, smooth surface without lubrication, smooth surface burnished with a layer of composite solid lubricant. The better dimple density range is 35-46%. The friction coefficients of the sample surface filled with micron-composite solid lubricant with the texture density of 35% are maintained at a low level (about 0.1) at temperatures ranging from RT to 300 °C. On the other hand, the results of the nano-sized composite lubricant show that these friction properties are better than those of MoS2-PI micron-sized composite. The friction coefficients of MoS2-PI-CNTs nano-sized composite solid lubricant are lower than those of the MoS2-PI composite lubricant at temperatures ranging from RT to 400 °C. In addition, the possible mechanisms involving the synergetic effect of the surface texture and the solid lubricant are discussed in the present work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...