Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766330

RESUMO

Aiming at the contradiction between the lubricating performance and mechanical performance of self-lubricating ceramic tools. CaF2@Al(OH)3 particles were prepared by the heterogeneous nucleation method. An Al2O3/Ti(C,N) ceramic tool with CaF2@Al2(OH)3 particles and ZrO2 whiskers was prepared by hot press sintering (frittage). The cutting performances and wear mechanisms of this ceramic tool were investigated. Compared with the Al2O3/Ti(C,N) ceramic tool, the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool had lower cutting temperatures and surface roughness. When the cutting speed was increased from 100m/min to 300m/min, a lot of CaF2 was smeared onto the surface of the ceramic tool, and the flank wear of the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool was reduced. The main wear mechanisms of the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool were adhesive wear and micro-chipping. The formation of solid lubricating film and the improvement of fracture toughness by adding ZrO2 whiskers and CaF2@Al(OH)3 were important factors for the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool to have better cutting performances.

2.
Nanomaterials (Basel) ; 9(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731487

RESUMO

In order to reduce the influence of CaF2 addition on the mechanical properties of self-lubricating ceramic tools, we applied a silicon dioxide (SiO2) coating on calcium fluoride (CaF2) nanoparticles through hydrolysis and condensation reactions using the tetraethoxysilane (TEOS) method. The powder was dried by the azeotropic method, so that it acquired a better dispersibility. The resulting composite powders were characterized using XRD (X-ray diffraction) and TEM (transmission electron microscopy), showing that the surface of CaF2 was coated with a layer of uniform and compact SiO2. SiO2 shells with different thicknesses could be obtained by changing the amount of TEOS added, and the thickness of the SiO2 shells could be controlled between 1.5 and 15 nm. At the same time, a ceramic material containing CaF2 nanoparticles and CaF2@SiO2-coated nanoparticles was prepared. It had the best mechanical properties when CaF2@SiO2-coated nanoparticles were added; its flexural strength, fracture toughness, and hardness were 562 ± 28 MPa, 5.51 ± 0.26 MPa·m1/2, and 15.26 ± 0.16 GPa, respectively. Compared with the ceramic tool containing CaF2 nanoparticles, these mechanical properties were increased by 17.57%, 12.67%, and 4.88%, respectively. The addition of CaF2@SiO2-coated nanoparticles greatly improved the antifriction and wear resistance of the ceramic material, and the antifriction and wear resistance were balanced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...