Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107137, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37404374

RESUMO

Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene Nr1d1 in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients. WAS decreased GR binding at the Nr1d1 promoter E-box (enhancer box), and GR could suppress Nr1d1 via this site. Stress also altered GR binding at the E-box sites along the Ikzf3-Nr1d1 chromatin and remodeled circadian chromatin 3D structures, including Ikzf3-Nr1d1 super-enhancer, Dbp, and Npas2. Intestinal deletion of Nr3c1 specifically abolished these stress-induced transcriptional alternations relevant to IBS phenotypes in BALB/c mice. GR mediated Ikzf3-Nr1d1 chromatin disease related circadian misalignment in stress-induced IBS animal model. This animal model dataset suggests that regulatory SNPs of human IKZF3-NR1D1 transcription through conserved chromatin looping have translational potential based on the GR-mediated circadian-stress crosstalk.

2.
STAR Protoc ; 4(2): 102188, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37000618

RESUMO

Here, we present a protocol for calculating the spatial density of regulatory chromatin interactions (SD-RCI) using Hi-C, ATAC-seq, and ChIP-seq datasets from the same cell line. We describe steps for selecting and preprocessing datasets, training and predicting a model to obtain regulatory chromatin interactions, and evaluating model performance. We then detail calculation of SD-RCI and visualization of the correlation between SD-RCI and gene expression. This protocol is applicable to Hi-C, ATAC-seq, and ChIP-seq data from the human cell line. For complete details on the use and execution of this protocol, please refer to Gong et al. (2023).1.

3.
Cell Rep Methods ; 3(1): 100386, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814847

RESUMO

Chromatin interactions play essential roles in chromatin conformation and gene expression. However, few tools exist to analyze the spatial density of regulatory chromatin interactions (SD-RCI). Here, we present the multi-modal network (MINE) toolkit, including MINE-Loop, MINE-Density, and MINE-Viewer. The MINE-Loop network aims to enhance the detection of RCIs, MINE-Density quantifies the SD--RCI, and MINE-Viewer facilitates 3D visualization of the density of chromatin interactions and participating regulatory factors (e.g., transcription factors). We applied MINE to investigate the relationship between the SD-RCI and chromatin volume change in HeLa cells before and after liquid-liquid phase separation. Changes in SD-RCI before and after treating the HeLa cells with 1,6-hexanediol suggest that changes in chromatin organization was related to the degree of activation or repression of genes. Together, the MINE toolkit enables quantitative studies on different aspects of chromatin conformation and regulatory activity.


Assuntos
Cromatina , Cromossomos , Humanos , Cromatina/genética , Células HeLa , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...