Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741272

RESUMO

Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.

2.
Plant Physiol Biochem ; 200: 107804, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269823

RESUMO

The tomato (Solanum lycopersicum) is widely consumed globally and renowned for its health benefits, including the reduction of cardiovascular disease and prostate cancer risk. However, tomato production faces significant challenges, particularly due to various biotic stresses such as fungi, bacteria, and viruses. To address this challenges, we employed the CRISPR/Cas9 system to modify the tomato NUCLEOREDOXIN (SlNRX) genes (SlNRX1 and SlNRX2) belonging to the nucleocytoplasmic THIOREDOXIN subfamily. CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1) plants exhibited resistance against bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, as well as the fungal pathogen Alternaria brassicicola. However, the slnrx2 plants did not display resistance. Notably, the slnrx1 demonstrated elevated levels of endogenous salicylic acid (SA) and reduced levels of jasmonic acid after Psm infection, in comparison to both wild-type (WT) and slnrx2 plants. Furthermore, transcriptional analysis revealed that genes involved in SA biosynthesis, such as ISOCHORISMATE SYNTHASE 1 (SlICS1) and ENHANCED DISEASE SUSCEPTIBILITY 5 (SlEDS5), were upregulated in slnrx1 compared to WT plants. In addition, a key regulator of systemic acquired resistance, PATHOGENESIS-RELATED 1 (PR1), exhibited increased expression in slnrx1 compared to WT. These findings suggest that SlNRX1 acts as a negative regulator of plant immunity, facilitating infection by the Psm pathogen through interference with the phytohormone SA signaling pathway. Thus, targeted mutagenesis of SlNRX1 is a promising genetic means to enhance biotic stress resistance in crop breeding.


Assuntos
Ácido Salicílico , Solanum lycopersicum , Ácido Salicílico/metabolismo , Solanum lycopersicum/genética , Melhoramento Vegetal , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Ciclopentanos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
3.
Plant Commun ; 4(4): 100570, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36864727

RESUMO

Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Temperatura , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Front Plant Sci ; 13: 1007542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237515

RESUMO

Anthropogenic activities cause the leaching of heavy metals into groundwater and their accumulation in soil. Excess levels of heavy metals cause toxicity in plants, inducing the production of reactive oxygen species (ROS) and possible death caused by the resulting oxidative stress. Heavy metal stresses repress auxin biosynthesis and transport, inhibiting plant growth. Here, we investigated whether nickel (Ni) heavy metal toxicity is reduced by exogenous auxin application and whether Ni stress tolerance in Arabidopsis thaliana is mediated by the bifunctional enzyme YUCCA6 (YUC6), which functions as an auxin biosynthetic enzyme and a thiol-reductase (TR). We found that an application of up to 1 µM exogenous indole-3-acetic acid (IAA) reduces Ni stress toxicity. yuc6-1D, a dominant mutant of YUC6 with high auxin levels, was more tolerant of Ni stress than wild-type (WT) plants, despite absorbing significantly more Ni. Treatments of WT plants with YUCASIN, a specific inhibitor of YUC-mediated auxin biosynthesis, increased Ni toxicity; however yuc6-1D was not affected by YUCASIN and remained tolerant of Ni stress. This suggests that rather than the elevated IAA levels in yuc6-1D, the TR activity of YUC6 might be critical for Ni stress tolerance. The loss of TR activity in YUC6 caused by the point-mutation of Cys85 abolished the YUC6-mediated Ni stress tolerance. We also found that the Ni stress-induced ROS accumulation was inhibited in yuc6-1D plants, which consequently also showed reduced oxidative damage. An enzymatic assay and transcriptional analysis revealed that the peroxidase activity and transcription of PEROXIREDOXIN Q were enhanced by Ni stress to a greater level in yuc6-1D than in the WT. These findings imply that despite the need to maintain endogenous IAA levels for basal Ni stress tolerance, the TR activity of YUC6, not the elevated IAA levels, plays the predominant role inNi stress tolerance by lowering Ni-induced oxidative stress.

6.
Biochem Biophys Res Commun ; 635: 12-18, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252332

RESUMO

Thioredoxins (TRXs) are small oxidoreductase proteins located in various subcellular compartments. Nucleoredoxin (NRX) is a nuclear-localized TRX and a key component for the integration of the antioxidant system with the immune response. Although NRX is well characterized in biotic stress responses, its functional role in abiotic stress responses is still elusive. To understand whether NRX contributes to heat stress response in tomato (Solanum lycopersicum), we generated CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1). Interestingly, the slnrx1 mutant was extremely sensitive to heat stress with higher electrolyte leakage, malondialdehyde contents, and H2O2 concentration compared to wild-type tomato plants, suggesting that SlNRX1 negatively regulates heat stress-induced oxidative damage. We also found that transcripts encoding antioxidant enzymes and Heat-Shock Proteins (HSPs) in slnrx1 were down-regulated either in the absence or presence of heat stress. These data suggest that NRX1 is a positive regulator for heat stress tolerance by elevating antioxidant capacity and inducing HSPs to protect cells against heat stress-induced oxidative damage and protein denaturation, respectively.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/metabolismo , Resposta ao Choque Térmico/genética , Oxirredutases/metabolismo , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Proc Natl Acad Sci U S A ; 119(33): e2207275119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939685

RESUMO

The circadian clock is a timekeeping, homeostatic system that temporally coordinates all major cellular processes. The function of the circadian clock is compensated in the face of variable environmental conditions ranging from normal to stress-inducing conditions. Salinity is a critical environmental factor affecting plant growth, and plants have evolved the SALT OVERLY SENSITIVE (SOS) pathway to acquire halotolerance. However, the regulatory systems for clock compensation under salinity are unclear. Here, we show that the plasma membrane Na+/H+ antiporter SOS1 specifically functions as a salt-specific circadian clock regulator via GIGANTEA (GI) in Arabidopsis thaliana. SOS1 directly interacts with GI in a salt-dependent manner and stabilizes this protein to sustain a proper clock period under salinity conditions. SOS1 function in circadian clock regulation requires the salt-mediated secondary messengers cytosolic free calcium and reactive oxygen species, pointing to a distinct regulatory role for SOS1 in addition to its function as a transporter to maintain Na+ homeostasis. Our results demonstrate that SOS1 maintains homeostasis of the salt response under high or daily fluctuating salt levels. These findings highlight the genetic capacity of the circadian clock to maintain timekeeping activity over a broad range of salinity levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Estresse Salino , Trocadores de Sódio-Hidrogênio , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estabilidade Proteica , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
8.
Front Plant Sci ; 13: 846294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283886

RESUMO

Light plays a crucial role in plant growth and development, and light signaling is integrated with various stress responses to adapt to different environmental changes. During this process, excessive protein synthesis overwhelms the protein-folding ability of the endoplasmic reticulum (ER), causing ER stress. Although crosstalk between light signaling and ER stress response has been reported in plants, the molecular mechanisms underlying this crosstalk are poorly understood. Here, we demonstrate that the photoreceptor phytochrome B (phyB) induces the expression of ER luminal protein chaperones as well as that of unfolded protein response (UPR) genes. The phyB-5 mutant was less sensitive to tunicamycin (TM)-induced ER stress than were the wild-type plants, whereas phyB-overexpressing plants displayed a more sensitive phenotype under white light conditions. ER stress response genes (BiP2 and BiP3), UPR-related bZIP transcription factors (bZIP17, bZIP28, and bZIP60), and programmed cell death (PCD)-associated genes (OXI1, NRP1, and MC8) were upregulated in phyB-overexpressing plants, but not in phyB-5, under ER stress conditions. The ER stress-sensitive phenotype of phyB-5 under red light conditions was eliminated with a reduction in photo-equilibrium by far-red light and darkness. The N-terminal domain of phyB is essential for signal transduction of the ER stress response in the nucleus, which is similar to light signaling. Taken together, our results suggest that phyB integrates light signaling with the UPR to relieve ER stress and maintain proper plant growth.

9.
Nat Plants ; 7(7): 914-922, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155371

RESUMO

The activities of cold-responsive C-repeat-binding transcription factors (CBFs) are tightly controlled as they not only induce cold tolerance but also regulate normal plant growth under temperate conditions1-4. Thioredoxin h2 (Trx-h2)-a cytosolic redox protein identified as an interacting partner of CBF1-is normally anchored to cytoplasmic endomembranes through myristoylation at the second glycine residue5,6. However, after exposure to cold conditions, the demyristoylated Trx-h2 is translocated to the nucleus, where it reduces the oxidized (inactive) CBF oligomers and monomers. The reduced (active) monomers activate cold-regulated gene expression. Thus, in contrast to the Arabidopsis trx-h2 (AT5G39950) null mutant, Trx-h2 overexpression lines are highly cold tolerant. Our findings reveal the mechanism by which cold-mediated redox changes induce the structural switching and functional activation of CBFs, therefore conferring plant cold tolerance.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Temperatura Baixa , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Oxirredução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
10.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546346

RESUMO

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Substâncias Húmicas , Estresse Salino/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma/efeitos dos fármacos
11.
Sci Rep ; 10(1): 15042, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929162

RESUMO

Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.


Assuntos
Proteínas de Choque Térmico/genética , Substâncias Húmicas , Termotolerância , Ativação Transcricional , Arabidopsis , Proteínas de Choque Térmico/metabolismo , Transcriptoma
12.
Plant Physiol Biochem ; 147: 313-321, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31901883

RESUMO

Salt stress limits crop productivity worldwide, particularly in arid and heavily irrigated regions. Salt stress causes oxidative stress, in which plant cells accumulate harmful levels of reactive oxygen species (ROS). Thioredoxins (Trxs; EC 1.8.4.8) are antioxidant proteins encoded by a ubiquitous multigene family. Arabidopsis thaliana Trx h-type proteins localize in the cytoplasm and other subcellular organelles, and function in plant responses to abiotic stresses and pathogen attack. Here, we isolated the Arabidopsis genes encoding two cytosolic h-type Trx proteins, AtTrx-h2 and AtTrx-h3 and generated transgenic oilseed rape (Brassica napus) plants overexpressing AtTrx-h2 or AtTrx-h3. Heterologous expression of AtTrx-h2 in B. napus conferred salt tolerance with plants grown on 50 mM NaCl having higher fresh weight and chlorophyll contents compared with controls in hydroponic growth system. By contrast, expression of AtTrx-h3 or the empty vector control did not improve salt tolerance. In addition, AtTrx-h2-overexpressing transgenic plants exhibited lower levels of hydrogen peroxide and higher activities of antioxidant enzymes including peroxidase, catalase, and superoxide dismutase, compared with the plants expressing the empty vector control or AtTrx-h3. These results suggest that AtTrx-h2 is a promising candidate for engineering or breeding crops with enhanced salt stress tolerance.


Assuntos
Arabidopsis , Brassica napus , Regulação da Expressão Gênica de Plantas , Oxirredutases , Proteínas de Plantas , Tolerância ao Sal , Tiorredoxina h , Arabidopsis/enzimologia , Arabidopsis/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Tiorredoxina h/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...