Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205665

RESUMO

Investigating the genetic diversity and population structure is important in conserving narrowly distributed plants. In this study, 90 Clematis acerifolia (C. acerifolia) plants belonging to nine populations were collected from the Taihang Mountains in Beijing, Hebei, and Henan. Twenty-nine simple sequence repeats (SSR) markers developed based on RAD-seq data were used to analyze the genetic diversity and population structure of C. acerifolia. The mean PIC value for all markers was 0.2910, indicating all SSR markers showed a moderate degree of polymorphism. The expected heterozygosity of the whole populations was 0.3483, indicating the genetic diversity of both C. acerifolia var. elobata and C. acerifolia were low. The expected heterozygosity of C. acerifolia var. elobata (He = 0.2800) was higher than that of C. acerifolia (He = 0.2614). Genetic structure analysis and principal coordinate analysis demonstrated that C. acerifolia and C. acerifolia var. elobata showed great genetic differences. Molecular variance analysis (AMOVA) demonstrated that within-population genetic variation (68.31%) was the main contributor to the variation of the C. acerifolia populations. Conclusively, C. acerifolia var. elobata had higher genetic diversity than C. acerifolia, and there are significant genetic differences between C. acerifolia and C. acerifolia var. elobata, and small genetic variations within the C. acerifolia populations. Our results provide a scientific and rational basis for the conservation of C. acerifolia and provide a reference for the conservation of other cliff plants.


Assuntos
Clematis , Variação Genética , Clematis/genética , Polimorfismo Genético , Heterozigoto , Biomarcadores , Repetições de Microssatélites/genética
2.
BMC Plant Biol ; 23(1): 46, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670355

RESUMO

BACKGROUND: Petal blotch is a unique ornamental trait in angiosperm families, and blotch in rose petal is rare and has great esthetic value. However, the cause of the formation of petal blotch in rose is still unclear. The influence of key enzyme genes and regulatory genes in the pigment synthesis pathways needs to be explored and clarified. RESULTS: In this study, the rose cultivar 'Sunset Babylon Eyes' with rose-red to dark red blotch at the base of petal was selected as the experimental material. The HPLC-DAD and UPLC-TQ-MS analyses indicated that only cyanidin 3,5-O-diglucoside (Cy3G5G) contributed to the blotch pigmentation of 'Sunset Babylon Eyes', and the amounts of Cy3G5G varied at different developmental stages. Only flavonols but no flavone were found in blotch and non-blotch parts. As a consequence, kaempferol and its derivatives as well as quercetin and its derivatives may act as background colors during flower developmental stages. Despite of the differences in composition, the total content of carotenoids in blotch and non-blotch parts were similar, and carotenoids may just make the petals show a brighter color. Transcriptomic data, quantitative real-time PCR and promoter sequence analyses indicated that RC7G0058400 (F3'H), RC6G0470600 (DFR) and RC7G0212200 (ANS) may be the key enzyme genes for the early formation and color deepening of blotch at later stages. As for two transcription factor, RC7G0019000 (MYB) and RC1G0363600 (WRKY) may bind to the promoters of critical enzyme genes, or RC1G0363600 (WRKY) may bind to the promoter of RC7G0019000 (MYB) to activate the anthocyanin accumulation in blotch parts of 'Sunset Babylon Eyes'. CONCLUSIONS: Our findings provide a theoretical basis for the understanding of the chemical and molecular mechanism for the formation of petal blotch in rose.


Assuntos
Rosa , Transcriptoma , Rosa/genética , Rosa/metabolismo , Antocianinas/metabolismo , Pigmentação/genética , Carotenoides/metabolismo , Metaboloma , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Genet ; 12: 690264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335694

RESUMO

Rose is one of the most fundamental ornamental crops, but its yield and quality are highly limited by drought. The key transcription factors (TFs) and co-expression networks during rose's response to drought stress and recovery after drought stress are still limited. In this study, the transcriptomes of leaves of 2-year-old cutting seedlings of Rosa chinensis 'Old Blush' from three continuous droughted stages (30, 60, 90 days after full watering) and rewatering were analyzed using RNA sequencing. Weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network, which was associated with the physiological traits of drought response to discovering the hub TFs involved in drought response. More than 45 million high-quality clean reads were generated from the sample and used for comparison with the rose reference genome. A total of 46433 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that drought stress caused significant changes in signal transduction, plant hormones including ABA, auxin, brassinosteroid (BR), cytokinin, ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), primary and secondary metabolism, and a certain degree of recovery after rewatering. Gene co-expression analysis identified 18 modules, in which four modules showed a high degree of correlation with physiological traits. In addition, 42 TFs including members of NACs, WRKYs, MYBs, AP2/ERFs, ARFs, and bHLHs with high connectivity in navajowhite1 and blue modules were screened. This study provides the transcriptome sequencing report of R. chinensis 'Old Blush' during drought stress and rewatering process. The study also identifies the response of candidate TFs to drought stress, providing guidelines for improving the drought tolerance of the rose through molecular breeding in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...