Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 93, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443927

RESUMO

Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.


Assuntos
Células Endoteliais , Glioma , Humanos , Oxaliplatina/farmacologia , Peróxido de Hidrogênio , Glioma/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes , Ferritinas , Imunossupressores , Microambiente Tumoral
3.
Acta Biomater ; 166: 640-654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236576

RESUMO

Triple negative breast cancer (TNBC) is prone to develop drug resistance and metastasis. Bone is the most common distant metastasis site of breast cancer cell. Patients with bone metastasis from TNBC suffer from unbearable pain due to the growth of bone metastasis and bone destruction. Simultaneously blocking the growth of bone metastasis and reprogramming the microenvironment of bone resorption and immunosuppression is a promising strategy to treat bone metastasis from TNBC. Herein, we prepared a pH and redox responsive drug delivery system, named DZ@CPH, by encapsulating docetaxel (DTX) with hyaluronic acid-polylactic acid micelle then reinforcing with calcium phosphate and zoledronate for targeting to bone metastasis from TNBC. DZ@CPH reduced the activation of osteoclast and inhibited bone resorption by decreasing the expression of nuclear factor κB receptor ligand and increasing the expression of osteoprotegerin in drug-resistant bone metastasis tissue. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the apoptosis-related and invasion-related protein expression. It also increased the sensitivity of orthotopic drug-resistant bone metastasis to DTX by inhibiting the expression of P-glycoprotein, Bcl-2 and transforming growth factor-ß in tissue of drug-resistant bone metastasis. Moreover, the ratio between M1 type macrophage to M2 type macrophage in bone metastasis tissue was increased by DZ@CPH. In a word, DZ@CPH blocked the growth of bone metastasis from drug-resistant TNBC through inducing the apoptosis of drug-resistant TNBC cells and reprogramming the microenvironment of bone resorption and immunosuppression. DZ@CPH has a great potential in clinical application for the treatment of bone metastasis from drug-resistant TNBC. STATEMENT OF SIGNIFICANCE: Triple negative breast cancer (TNBC) is prone to develop bone metastasis. Now bone metastasis is still an intractable disease. In this study, docetaxel and zoledronate co-loaded calcium phosphate hybrid micelles (DZ@CPH) were prepared. DZ@CPH reduced the activation of osteoclasts and inhibited bone resorption. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the expression of apoptosis and invasion related protein in bone metastasis tissue. Moreover, the ratio between M1 type macrophages to M2 type macrophages in bone metastases tissue was increased by DZ@CPH. In a word, DZ@CPH blocked vicious cycle between the growth of bone metastasis and bone resorption, which greatly improved the therapeutic effect on bone metastasis from drug-resistant TNBC.


Assuntos
Doenças da Medula Óssea , Neoplasias Ósseas , Osteólise , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel , Micelas , Neoplasias de Mama Triplo Negativas/patologia , Ácido Zoledrônico , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Terapia de Imunossupressão , Fosfatos de Cálcio/uso terapêutico , Microambiente Tumoral
4.
Redox Biol ; 63: 102734, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37159984

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and its early onset is closely related to mitochondrial energy metabolism. The brain is only 2% of body weight, but consumes 20% of total energy needs. Mitochondria are responsible for providing energy in cells, and maintaining their homeostasis ensures an adequate supply of energy to the brain. Mitochondrial homeostasis is constituted by mitochondrial quantity and quality control, which is dynamically regulated by mitochondrial energy metabolism, mitochondrial dynamics and mitochondrial quality control. Impaired energy metabolism of brain cells occurs early in AD, and maintaining mitochondrial homeostasis is a promising therapeutic target in the future. We summarized the mechanism of mitochondrial homeostasis in AD, its influence on the pathogenesis of early AD, strategies for maintaining mitochondrial homeostasis, and mitochondrial targeting strategies. This review concludes with the authors' opinions on future research and development for mitochondrial homeostasis of early AD.


Assuntos
Doença de Alzheimer , Estresse Oxidativo , Humanos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Homeostase
6.
Acta Biomater ; 160: 265-280, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822483

RESUMO

Myocardial ischemia-reperfusion injury (MI/RI) seriously restricts the therapeutic effect of reperfusion. It is demonstrated that ferroptosis and apoptosis of cardiomyocytes are widely involved in MI/RI. Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Besides, transferrin receptor 1 (TfR1) is highly expressed in ischemic myocardium, and apoferritin (ApoFn) is a ligand of the transferrin receptor. In this study, CsA@ApoFn was prepared by wrapping cyclosporin A (CsA) with ApoFn and actively accumulated in ischemic cardiomyocytes through TfR1 mediated endoctosis in MI/RI mice. After entering cardiomyocytes, ApoFn in CsA@ApoFn inhibited ferroptosis of ischemic cardiomyocytes by increasing the protein expression of GPX4 and reducing the content of labile iron pool and lipid peroxides. At the same time, CsA in CsA@ApoFn attenuated the apoptosis of ischemic cardiomyocytes through recovering mitochondrial membrane potential and reducing the level of reactive oxygen species, which played a synergistic role with ApoFn in the treatment of MI/RI. In conclusion, CsA@ApoFn restored cardiac function of MI/RI mice by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. ApoFn itself not only served as a safe carrier to specifically deliver CsA to ischemic cardiomyocytes but also played a therapeutic role on MI/RI. CsA@ApoFn is proved as an effective drug delivery platform for the treatment of MI/RI. STATEMENT OF SIGNIFICANCE: Recent studies have shown that ferroptosis is an important mechanism of myocardial ischemia-reperfusion injury (MI/RI). Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Apoferritin, as a delivery carrier, can actively target to ischemic myocardium through binding with highly expressed transferrin receptor on ischemic cardiomyocytes. At the same time, apoferritin plays a protective role on ischemic cardiomyocytes by inhibiting ferroptosis. This strategy of killing two birds with one stone significantly improves the therapeutic effect on MI/RI while does not need more pharmaceutical excipients, which has the prospect of clinical transformation.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ciclosporina/farmacologia , Ciclosporina/química , Ciclosporina/metabolismo , Apoferritinas/farmacologia , Apoferritinas/metabolismo , Apoferritinas/uso terapêutico , Apoptose
7.
J Nanobiotechnology ; 20(1): 256, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658867

RESUMO

BACKGROUND: Ischemic stroke is one of the main causes of death and disability in the world. The treatment for ischemic stroke is to restore blood perfusion as soon as possible. However, when ischemic brain tissue is re-perfused by blood, the mitochondrial permeability transition pore (mPTP) in neuron and microglia is excessively opened, resulting in the apoptosis of neuron and nerve inflammation. This aggravates nerve injury. Cyclosporine A (CsA) inhibits the over-opening of mPTP, subsequently reducing the release of ROS and the apoptosis of cerebral ischemia/reperfusion injured neuron and microglia. However, CsA is insoluble in water and present in high concentrations in lymphatic tissue. Herein, cerebral infarction tissue targeted nanoparticle (CsA@HFn) was developed to treat cerebral ischemia/reperfusion injury. RESULTS: CsA@HFn efficiently penetrated the blood-brain barrier (BBB) and selectively accumulated in ischemic area, inhibiting the opening of mPTP and ROS production in neuron. This subsequently reduced the apoptosis of neuron and the damage of BBB. Consequently, CsA@HFn significantly reduced the infarct area. Moreover, CsA@HFn inhibited the recruitment of astrocytes and microglia in ischemic region and polarized microglia into M2 type microglia, which subsequently alleviated the nerve inflammation. CONCLUSIONS: CsA@HFn showed a significant therapeutic effect on cerebral ischemia/reperfusion injury by alleviating the apoptosis of neuron, nerve inflammation and the damage of BBB in ischemic area. CsA@HFn has great potential in the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Traumatismo por Reperfusão , Animais , Camundongos , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Ciclosporina/farmacologia , Inflamação/tratamento farmacológico , Isquemia/tratamento farmacológico , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico
8.
J Nanobiotechnology ; 20(1): 251, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659239

RESUMO

BACKGROUND: At present, patients with myocardial infarction remain an increased risk for myocardial ischemia/reperfusion injury (MI/RI). There lacks effectively method to treat MI/RI in clinic. For the treatment of MI/RI, it is still a bottleneck to effectively deliver drug to ischemic myocardium. In this paper, a regulatory T cells (Tregs) biomimetic nanoparticle (CsA@PPTK) was prepared by camouflaging nanoparticle with platelet membrane. RESULTS: CsA@PPTK actively accumulated in ischemic myocardium of MI/RI mice. CsA@PPTK significantly scavenged reactive oxygen species (ROS) and increased the generation of Tregs and the ratio of M2 type macrophage to M1 type macrophage in ischemic myocardium. Moreover, CsA@PPTK significantly attenuated apoptosis of cardiomyocytes and reduced the infarct size and fibrosis area in ischemic myocardium. CsA@PPTK markedly decreased the protein expression of MMP-9 and increased the protein expression of CX43 in ischemic myocardium tissue. Subsequently, the remodeling of the left ventricle was significant alleviated, and heart function of MI/RI mice was markedly improved. CONCLUSION: CsA@PPTK showed significant therapeutic effect on MI/RI, and it has great potential application in the treatment of MI/RI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Animais , Apoptose , Biomimética , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Oxirredução
9.
ACS Nano ; 16(5): 7409-7427, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549164

RESUMO

Glioblastoma (GBM) is an invasive cancer with high mortality in central nervous system. Resistance to temozolomide (TMZ) and immunosuppressive microenvironment lead to low outcome of the standardized treatment for GBM. In this study, a 2-deoxy-d-glucose modified lipid polymer nanoparticle loaded with TMZ and siPD-L1 (TMZ/siPD-L1@GLPN/dsb) was prepared to reprogram the TMZ-resistant and immunosuppressive microenvironment in orthotopic GBM. TMZ/siPD-L1@GLPN/dsb simultaneously delivered a large amount of TMZ and siPD-L1 to the deep area of the orthotopic TMZ-resistant GBM tissue. By inhibiting PD-L1 protein expression, TMZ/siPD-L1@GLPN/dsb markedly augmented the percentage of CD3+CD8+IFN-γ+ cells (Teff cells) and reduced the percentage of CD4+CD25+FoxP3+ cells (Treg cells) in orthotopic TMZ-resistant GBM tissue, which enhanced T-cell mediated cytotoxicity on orthotopic TMZ-resistant GBM. Moreover, TMZ/siPD-L1@GLPN/dsb obviously augmented the sensitivity of orthotopic TMZ-resistant GBM to TMZ through decreasing the protein expression of O6-methyl-guanine-DNA methyltransferase (MGMT) in TMZ-resistant GBM cells. Thus, TMZ/siPD-L1@GLPN/dsb markedly restrained the growth of orthotopic TMZ-resistant GBM and extended the survival time of orthotopic GBM rats through reversing a TMZ-resistant and immunosuppressive microenvironment. TMZ/siPD-L1@GLPN/dsb shows potential application to treat orthotopic TMZ-resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Ratos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Fármacos por Nanopartículas
10.
J Nanobiotechnology ; 20(1): 161, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35351131

RESUMO

BACKGROUND: Clinical studies have shown that the efficacy of programmed cell death receptor-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors on glioblastoma (GBM) is much lower than what is expected because of the low immunogenicity of GBM. Ferroptosis of cancer cells can induce the maturation of dendritic cells (DC cells) and increase the activity of T cell. The activated T cells release IFN-γ, which subsequently induces the ferroptosis of cancer cells. Thus, the aim of this paper is to set up a new GBM-targeted drug delivery system (Fe3O4-siPD-L1@M-BV2) to boost ferroptosis for immunotherapy of drug-resistant GBM. RESULTS: Fe3O4-siPD-L1@M-BV2 significantly increased the accumulation of siPD-L1 and Fe2+ in orthotopic drug-resistant GBM tissue in mice. Fe3O4-siPD-L1@M-BV2 markedly decreased the protein expression of PD-L1 and increased the ratio between effector T cells and regulatory T cells in orthotopic drug-resistant GBM tissue. Moreover, Fe3O4-siPD-L1@M-BV2 induced ferroptosis of GBM cells and maturation of DC cell, and it also increased the ratio between M1-type microglia and M2-type microglia in orthotopic drug-resistant GBM tissue. Finally, the growth of orthotopic drug-resistant GBM in mice was significantly inhibited by Fe3O4-siPD-L1@M-BV2. CONCLUSION: The mutual cascade amplification effect between ferroptosis and immune reactivation induced by Fe3O4-siPD-L1@M-BV2 significantly inhibited the growth of orthotopic drug-resistant GBM and prolonged the survival time of orthotopic drug-resistant GBM mice.


Assuntos
Ferroptose , Glioblastoma , Animais , Biomimética , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Imunoterapia , Camundongos , Preparações Farmacêuticas
11.
J Nanobiotechnology ; 19(1): 367, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789268

RESUMO

BACKGROUND: Colon cancer is a most common malignant cancer in digestive system, and it is prone to develop resistance to the commonly used chemotherapy drugs, leading to local recurrence and metastasis. Paris saponin VII (PSVII) could not only inhibit the proliferation of colon cancer cells but also effectively induce apoptosis of drug-resistant colon cancer cells and reduce the metastasis of drug-resistant colon cancer cells as well. However, PSVII was insoluble in water and fat. It displayed no selective distribution in body and could cause severe hemolysis. Herein, colon cancer targeting calcium phosphate nanoparticles were developed to carry PSVII to treat drug-resistant colon cancer. RESULTS: PSVII carboxymethyl-ß-cyclodextrin inclusion compound was successfully encapsulated in colon cancer targeting calcium phosphate nanoparticles (PSVII@MCP-CaP) by using modified citrus pectin as stabilizer agent and colon cancer cell targeting moiety. PSVII@MCP-CaP significantly reduced the hemolysis of PSVII. Moreover, by specific accumulating in orthotopic drug-resistant colon cancer tissue, PSVII@MCP-CaP markedly inhibited the growth of orthotopic drug-resistant colon cancer in nude mice. PSVII@MCP-CaP promoted the apoptosis of drug-resistant colon cancer cells through mitochondria-mediated apoptosis pathway. Moreover, PSVII@MCP-CaP significantly inhibited the invasion and migration of drug-resistant colon cancer cells by increasing E-cadherin protein expression and reducing N-cadherin and MMP-9 protein expression. CONCLUSION: PSVII@MCP-CaP has great potential in the treatment of drug-resistant colon cancer. This study also explores a new method to prepare active targeting calcium phosphate nanoparticles loaded with a fat and water insoluble compound in water.


Assuntos
Antineoplásicos , Neoplasias do Colo/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas/química , Nanopartículas/química , Pectinas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fosfatos de Cálcio/química , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Camundongos Nus , Saponinas/química , Saponinas/farmacologia
12.
J Control Release ; 336: 54-70, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129862

RESUMO

Currently, clinical treatment for temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) is still a difficult problem. The aim of this paper is to set up a new GBM-targeted drug delivery system to treat TMZ-resistant GBM. Zoledronate (ZOL) not only induces apoptosis of TMZ-resistant GBM cells by down-regulation of farnesyl pyrophosphate synthetase (FPPS) but also increases the proportion of M1-type GBM associated macrophages (GAM). Based on chemoattractants secreted by GBM cells, a ZOL loaded nanoparticle coated with microglia cell membrane (ZOL@CNPs) was prepared to deliver ZOL to central nervous system to treat TMZ-resistant GBM. ZOL@CNPs was actively recruited to TMZ-resistant GBM region by CX3CL1/CX3CR1 and CSF-1/CSF-1R signal axis, and the release of ZOL from ZOL@CNPs was triggered by glutathione in GBM cells. ZOL@CNPs inhibited the growth of TMZ-resistant GBM through inducing apoptosis and inhibiting the migration and invasion of TMZ-resistant GBM cells. Besides, the immunosuppressive and hypoxic microenvironment, playing an important role in the growth of TMZ-resistant GBM, was significantly improved by ZOL@CNPs through increasing the proportion of M1-type GAM and blocking the expression of HIF-1α. ZOL@CNPs has a great potential application in the treatment for TMZ-resistant GBM.


Assuntos
Glioblastoma , Nanopartículas , Antineoplásicos Alquilantes/uso terapêutico , Biomimética , Linhagem Celular Tumoral , Fatores Quimiotáticos/farmacologia , Fatores Quimiotáticos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Humanos , Microglia , Temozolomida/uso terapêutico , Microambiente Tumoral
13.
J Pharm Sci ; 110(2): 876-887, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166581

RESUMO

Prostate cancer is the most common malignant tumor with bone metastasis, and there is still no ideal treatment for bone metastasis of prostate cancer. In this study, a pH and GSH dual sensitive calcium phosphate-polymer hybrid nanoparticle (DTX@Cap/HP) was prepared to co-deliver zoledronate (ZOL) and docetaxel (DTX) to treat bone metastasis of prostate cancer. DTX@Cap/HP exhibited high bone binding affinity and released more DTX and ZOL in acidic and high GSH concentration environment. A large amount of DTX@Cap/HP was uptaken by PC-3 cell in acidic medium than that in neutral medium. DTX@Cap/HP obviously reduced PC-3 cell proliferation and bone lesion in in-vitro 3D model of bone metastases of prostate cancer. Besides, DTX@Cap/HP also exhibited stronger anti bone metastases of prostate cancer activity in vivo as compared with the same dose of DTX + ZOL, which resulted from the co-delivery of DTX and ZOL to bone metastases of prostate cancer by DTX@Cap/HP and the synergistic effects of DTX and ZOL. DTX@Cap/HP has great potential in the treatment of bone metastases of prostate cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias da Próstata , Antineoplásicos/uso terapêutico , Fosfatos de Cálcio , Linhagem Celular Tumoral , Docetaxel , Humanos , Masculino , Polímeros , Neoplasias da Próstata/tratamento farmacológico , Ácido Zoledrônico/uso terapêutico
14.
Oncol Rep ; 43(6): 1975-1985, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236590

RESUMO

Circulating tumor cells (CTCs) or CTC clusters are considered as suitable and relevant targets for liquid biopsy as they more accurately indicate cancer progression, the therapeutic effects of treatment and allows for monitoring of cancer metastasis in real­time. Among the various methods for isolating CTCs, size­based filtration is one of the most convenient methods. However, cell clogging makes the filtration process less efficient. In the present study, an electromagnetic vibration­based filtration (eVBF) device was developed that efficiently isolated rare CTCs and CTC clusters from clinical blood samples of patients with gastric cancer. Using human blood samples spiked with human gastric cancer cells, the parameters of this device such as vibrating amplitude and flow rate were optimized. Putative CTCs were detected using a conventional filtration method and the eVBF device from the peripheral blood samples of patients with gastric cancer. Continuous flow isolation of CTCs was evaluated by a simulated blood flow system. The eVBF device utilized the electromagnetic force to generate a periodic vibration that prevented the cell clogging and improved the filtering efficiency. The optimized eVBF device with the high­amplitude vibration exhibited a recovery efficiency of 80­90% from whole blood samples spiked with 100 or 1,000 gastric cancer cells per ml. Using the eVBF device, CTCs were detected in 100% of patients (10/10) with gastric cancer, and the positive detection rate of the eVBF device was 30% higher compared with the conventional filtration method. Furthermore, CTC clusters were detected in 40% (4/10) of CTC­positive patient samples, and the integrity of CTC clusters was preserved using the eVBF device. The eVBF device allowed for high­throughput (1 ml/min) and continuous flow isolation of CTCs without the addition of any antibodies, any chemical reagents or any pretreatment processes. Thus, the eVBF device provides an efficient tool for isolating rare CTCs and CTC clusters from patients with cancer, highlighting its potential for use in cancer diagnosis, treatment and cancer biology research.


Assuntos
Separação Celular/instrumentação , Filtração/instrumentação , Células Neoplásicas Circulantes/patologia , Neoplasias Gástricas/patologia , Idoso , Contagem de Células , Linhagem Celular Tumoral , Fenômenos Eletromagnéticos , Desenho de Equipamento , Feminino , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Vibração
15.
Nanomedicine (Lond) ; 15(9): 833-849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32163008

RESUMO

Aim: To prepare pH-sensitive nanoparticle composed of alendronate (ALN) and poly(amidoamine) (PAMAM) to treat bone metastases of lung cancer. Methods: The solvent evaporation method was used to prepare docetaxel (DTX)-loaded ALN-PAMAM nanoparticles (DTX@ALN-PAMAM). Results: The in vitro results showed DTX@ALN-PAMAM significantly enhanced the anticancer activity of DTX and inhibited the formation of osteoclasts. DTX@ALN-PAMAM concentrated at bone metastasis site in mice, which resulted in the suppression of bone resorption, pain response and growth of bone metastases. Eventually, the therapeutic effect of DTX on bone metastases of lung cancer was obviously improved. Conclusion: ALN modified PAMAM nanoparticle could be an effective platform for the treatment of bone metastases of lung cancer.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Neoplasias Pulmonares , Nanopartículas , Alendronato , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Docetaxel , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Poliaminas
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 33(11): 1521-1528, 2017 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-29268857

RESUMO

Objective To construct the expression vector of the fusion protein of apolipoprotain B mRNA editing enzyme catalytic polypeptide-like 3A (APOBEC3A) and hepatitis B virus core proteins (HBc) with different sequences, and identify its expression, intracellular localization and cytosine deamination activity. Methods The APOBEC3A gene and the coding sequence of HBc and four kinds of truncated HBc containing C-termimal domain were amplified by PCR. The APOBEC3A with full-length HBc antigen or four kinds of truncated HBc were cloned into a eukaryotic expression vector pcDNA3.0 by In-Fusion method, and confirmed by DNA sequencing. The recombinants were then transfected into HEK293T cells. The expression and localization of the fusion proteins were detected by Western blotting and immunofluorescence cytochemistry. The cytosine deamination activity was analyzed by electrophoresis on a urea denaturing polyacrylamide gel. Results Five kinds of fusion protein were expressed in HEK293T cells successfully, and the expression of the vectors containing the truncated HBc were higher than that of the APOBEC3A-HBc vector containing the full-length HBc. The fusion protein of APOBEC3A-HBc was mainly expressed in the cytoplasm of HEK293T cells, and the fusion proteins of APOBEC3A-HBc144S, APOBEC3A-HBc144E, APOBEC3A-HBc144AAA, APOBEC3A-HBc144A were expressed mainly in the nuclei of HEK293T cells. The cytosine deamination activity of the fusion proteins containing the truncated HBc was higher than that of the fusion protein APOBEC3A-HBc. Conclusion The fusion protein expression vectors of APOBEC3A and HBc with different lengths and sequences have been constructed successfully. The expressing ability, intracellular localization and cytosine deamination activity are obviously different between the fusion protein APOBEC3A-HBc and the fusion proteins containing the truncated HBc.


Assuntos
Citidina Desaminase/genética , Expressão Gênica , Vírus da Hepatite B/genética , Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas do Core Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Citidina Desaminase/metabolismo , Células HEK293 , Vírus da Hepatite B/metabolismo , Humanos , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Proteínas do Core Viral/metabolismo
17.
Bing Du Xue Bao ; 33(1): 36-43, 2017 Jan.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-30702819

RESUMO

We wished to study the genetic diversities and mutations of the basic core promoter (BCP) and pre-C region of the hepatitis B virus (HBV) in liver-cancer tissues. One hundred and ninety-two tissue samples were collected from patients suffering from hepatocellular carcinoma (HCC) and HBV infection in 2015 in Xijing Hospital. Twenty-one cases were selected, of which direct sequencing of the polymerase chain reaction (PCR)-amplified products of BCP/pre-C region was unsuccessful. Cloning and sequencing allowed the DNA sequences of the BCP/pre-C region to be analyzed. Sequencing showed infection with mixed mutants of HBV in 37. 89% of HBV-positive HCC patients, and that HBV DNA in each sample contained 2 ~ 11 types of mutations.. The mutation rate of deletion and insertion was 80. 95%. Other mutations in descending order by mutation rate were a: A1762T/G1764A combined mutation (90. 48%); G1756C/T1803A/A(1757 ~ 1765)/A (1824 ~ 1832) combined mutation (80. 95%); T1753C/A1762T/ G1764A combined mutation (57. 14%); A1762T/G1764A/G1896A combined mutation (42. 86%); G1756C/Δ(1757~176.5) combined mutation,(28. 57%); T1753C/A1762T/G1764A/G1896A combined mutation (23. 81%). The sequencing failure of PCR products may have been correlated directly with the deletion and insertion mutations of HBV DNA. These findings lay the foundation for further studies on HBV mutations, persistent infection, and the mechanism of personalized medicine.


Assuntos
Variação Genética , Genoma Viral , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B/virologia , Regiões Promotoras Genéticas , Adulto , Idoso , Sequência de Bases , Feminino , Vírus da Hepatite B/classificação , Vírus da Hepatite B/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...