Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(15): 7083-7091, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32216258

RESUMO

The hydroazidation of alkynes is the most straightforward way to access vinyl azides-versatile building blocks in organic synthesis. We previously realized such a fundamental reaction of terminal alkynes using Ag2CO3 as a catalyst. However, the high catalyst loading seriously limits its practicality, and moreover, the exact reaction mechanism remains unclear. Here, on the basis of X-ray diffraction studies on the conversion of silver salts, we report the identification of AgN3 as the real catalytic species in this reaction and developed a AgN3-catalyzed hydroazidation of terminal alkynes. AgN3 proved to be a highly robust catalyst, as the loading of AgN3 could be as low as 5 mol %, and such a small proportion of AgN3 is still highly efficient even at a 50 mmol reaction scale. Further, the combination of experimental investigations and theoretical calculations disclosed that the concerted addition mechanism via a six-membered transition state is more favored than the classical silver acetylide mechanism.

2.
Angew Chem Int Ed Engl ; 56(44): 13805-13808, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28627090

RESUMO

A silver-catalyzed intermolecular aminosulfonylation of terminal alkynes with sodium sulfinates and TMSN3 is reported. This three-component reaction proceeds through sequential hydroazidation of the terminal alkyne and addition of a sulfonyl radical to the resultant vinyl azide. The method enables the stereoselective synthesis of a wide range of ß-sulfonyl enamines without electron-withdrawing groups on the nitrogen atom. These enamines are found to be suitable for a variety of further transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...