Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(7): 885-893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38332130

RESUMO

Despite the great potential of CRISPR-based detection, it has not been competitive with other market diagnostics for on-site and in-home testing. Here we dissect the rate-limiting factors that undermine the performance of Cas12b- and Cas13a-mediated detection. In one-pot testing, Cas12b interferes with loop-mediated isothermal amplification by binding to and cleaving the amplicon, while Cas13a directly degrades the viral RNA, reducing its amplification. We found that the protospacer-adjacent motif-interacting domain engineered Cas12b accelerated one-pot testing with 10-10,000-fold improved sensitivity, and detected 85 out of 85 SARS-CoV-2 clinical samples with a sensitivity of 0.5 cp µl-1, making it superior to wild-type Cas12b. In parallel, by diminishing the interference of Cas13a with viral RNA, the optimized Cas13a-based assay detected 86 out of 87 SARS-CoV-2 clinical samples at room temperature in 30 min with a sensitivity of 0.5 cp µl-1. The relaxed reaction conditions and improved performance of CRISPR-based assays make them competitive for widespread use in pathogen detection.


Assuntos
COVID-19 , Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , RNA Viral/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sensibilidade e Especificidade
2.
Cell Stem Cell ; 30(12): 1624-1639.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37989316

RESUMO

Reactivating silenced γ-globin expression through the disruption of repressive regulatory domains offers a therapeutic strategy for treating ß-hemoglobinopathies. Here, we used transformer base editor (tBE), a recently developed cytosine base editor with no detectable off-target mutations, to disrupt transcription-factor-binding motifs in hematopoietic stem cells. By performing functional screening of six motifs with tBE, we found that directly disrupting the BCL11A-binding motif in HBG1/2 promoters triggered the highest γ-globin expression. Via a side-by-side comparison with other clinical and preclinical strategies using Cas9 nuclease or conventional BEs (ABE8e and hA3A-BE3), we found that tBE-mediated disruption of the BCL11A-binding motif at the HBG1/2 promoters triggered the highest fetal hemoglobin in healthy and ß-thalassemia patient hematopoietic stem/progenitor cells while exhibiting no detectable DNA or RNA off-target mutations. Durable therapeutic editing by tBE persisted in repopulating hematopoietic stem cells, demonstrating that tBE-mediated editing in HBG1/2 promoters is a safe and effective strategy for treating ß-hemoglobinopathies.


Assuntos
Edição de Genes , Hemoglobinopatias , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Sistemas CRISPR-Cas , Mutação/genética , Hemoglobinopatias/genética , Hemoglobinopatias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell Insight ; 1(6): 100067, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37193354

RESUMO

CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...