Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756934

RESUMO

The development of ink-based printing techniques has enabled the fabrication of electric circuits on flexible substrates. Previous studies have shown that the process method which uses a silver (Ag) precursor (AgCF3COO) and electrospun poly(styrene-block-butadiene-block-styrene) (SBS) can yield patterns with high conductivity and stretchability. However, the only method to reduce the Ag precursor absorbed in SBS is chemical reduction using a toxic solution. Here, we developed a process to fabricate a high-conductivity pattern via laser reduction by photo-chemical reaction without toxic solutions. The Ag precursor was absorbed in electrospun SBS to form a composite layer (composite SBS) with modified properties, that could more effectively absorb the photon energy than SBS without the Ag precursor. We analyzed the properties of this material, such as its light absorption coefficient, heat conductivity, and the density of both SBS and composite SBS to allow comparison of the two materials by numerical simulation. In addition, we fabricated patterns on highly heat-sensitive substrates such as burning paper and a polyethylene terephthalate (PET) thin film, as the pattern can be implemented using very low laser energy. We expect the proposed approach to become a key technology for implementing user-designed circuits for wearable sensors and devices on various flexible substrates.

2.
Materials (Basel) ; 11(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425144

RESUMO

The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations.

3.
Nanotechnology ; 28(16): 165301, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28291021

RESUMO

There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 µm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...