Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(22): 12174-12184, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37843153

RESUMO

DNA-protein crosslinks (DPCs) are large cytotoxic DNA lesions that form following exposure to chemotherapeutic drugs and environmental chemicals. Nucleotide excision repair (NER) and homologous recombination (HR) promote survival following exposure to DPC-inducing agents. However, it is not known how cells recognize DPC lesions, or what mechanisms selectively target DPC lesions to these respective repair pathways. To address these questions, we examined DPC recognition and repair by transfecting a synthetic DPC lesion comprised of the human oxoguanine glycosylase (OGG1) protein crosslinked to double-stranded M13MP18 into human cells. In wild-type cells, this lesion is efficiently repaired, whereas cells deficient in NER can only repair this lesion if an un-damaged homologous donor is co-transfected. Transfected DPC is subject to rapid K63 polyubiquitination. In NER proficient cells, the DPC is subject to K48 polyubiquitination, and is removed via a proteasome-dependent mechanism. In NER-deficient cells, the DNA-conjugated protein is not subject to K48 polyubiquitination. Instead, the K63 tag remains attached, and is only lost when a homologous donor molecule is present. Taken together, these results support a model in which selective addition of polyubiquitin chains to DNA-crosslinked protein leads to selective recruitment of the proteasome and the cellular NER and recombinational DNA repair machinery.


Assuntos
Reparo do DNA , Complexo de Endopeptidases do Proteassoma , Humanos , DNA/química , Dano ao DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/química , Proteínas/metabolismo , Ubiquitina/genética , Ubiquitinação , Transdução de Sinais
2.
Bioanalysis ; 15(18): 1129-1146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37638814

RESUMO

Background: Hybrid LC-MS assays for oligonucleotides rely on capture probes to develop assays with high sensitivity and specificity. Locked nucleic acid (LNA) probes are thermodynamically superior to existing capture probes, but are not currently used for hybrid LC-MS assays. Materials & methods: Using two lipid-conjugated double-stranded siRNA compounds as model analytes, hybrid LC-MS/MS assays using LNA probes were developed. Results: The workflows demonstrated the superiority of the LNA probes, optimized sample preparation conditions to maximize analyte recovery, evaluated the need for analyte-specific internal standards, and demonstrated that advanced mass spectrometric technology can increase assay sensitivity by up to 20-fold. Conclusion: The workflow can be used in future bioanalytical studies to develop effective hybrid LC-MS/MS methods for siRNA analytes.


Assuntos
Oligonucleotídeos , Espectrometria de Massas em Tandem , RNA Interferente Pequeno , Cromatografia Líquida
3.
Anal Chem ; 94(4): 2032-2041, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041378

RESUMO

Macrocyclic peptides (MCPs) are an emerging class of promising drug modalities that can be used to interrogate hard-to-drug ("undruggable") targets. However, their poor intestinal stability is one of the major liabilities or obstacles for oral drug delivery. We therefore investigated the metabolic stability and biotransformation of MCPs via a systematic approach and established an integrated in vitro assay strategy to facilitate MCP drug discovery, with a focus on oral delivery liabilities. A group of diverse MCPs were incubated with representative matrices, including simulated intestinal fluid with pancreatin (SIFP), human enterocytes, liver S9 fractions, liver lysosomes, plasma, and recombinant enzymes. The results revealed that the stability and biotransformation of MCPs varied, with the major metabolic pathways identified in different matrices. Under the given conditions, the selected MCPs generally showed better stability in plasma compared to that in SIFP. Our data suggest that pancreatic enzymes act as the primary metabolic barrier for the oral delivery of MCPs, mainly through hydrolysis of their backbone amide bonds. Whereas in enterocytes, multiple metabolic pathways appeared to be involved and resulted in metabolic reactions such as oxidation and reduction in addition to hydrolysis. Further studies suggested that lysosomal peptidase cathepsin B could be a major enzyme responsible for the cleavage of side-chain amide bonds in lysosomes. Collectively, we developed and implemented an integrated assay for assessing the metabolic stability and biotransformation of MCPs for compound screening in the discovery stage toward oral delivery. The proposed question-driven assay cascade can provide biotransformation insights that help to guide and facilitate lead candidate selection and optimization.


Assuntos
Peptídeo Hidrolases , Peptídeos , Biotransformação , Descoberta de Drogas , Humanos , Preparações Farmacêuticas
4.
Front Cell Dev Biol ; 9: 596484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777927

RESUMO

Urothelial bladder cancer (UBC) is the most common malignant tumor of the urinary system. Most patients do not benefit from treatment with immune checkpoint inhibitors, which are closely associated with immune profiling in the context of UBC. Therefore, we aimed to characterize the immune profile of UBC to identify different immune subtypes that may influence therapy choice. We identified four subtypes of UBC based on immune profiling including immune ignorant, cold tumor, immune inactive, and hot tumor. After excluding the cold tumor subtype because of its unique pathology distinct from the other types, a high correlation between patient survival and immune characteristics was observed. Most immune cell types had highly infiltrated the hot tumor subtype compared to other subtypes. Interestingly, although immune cells infiltrated the tumor microenvironment, they exhibited an exhaustion phenotype. CCL4 may be the key molecule functioning in immune cell infiltration in the hot tumor subtype. Moreover, neutrophils may function as an important suppressor in the tumor microenvironment of the immune ignorant and immune inactive subtypes. Furthermore, different tumor-intrinsic signaling pathways were involved in immune cell infiltration and exclusion in these four different subtypes. Immune profiling could serve as a prognostic biomarker for UBC, and has potential to guide treatment decisions in UBC. Targeting tumor-intrinsic signaling pathways may be a promising strategy to treat UBC.

5.
Signal Transduct Target Ther ; 5(1): 179, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868756
6.
ACS Chem Biol ; 14(12): 2564-2575, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31573793

RESUMO

DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that block the access of proteins to DNA and interfere with gene expression, replication, and repair. We previously described DPC formation at the N7-guanine position of DNA in human cells treated with antitumor nitrogen mustards and platinum compounds and have shown that DPCs can form endogenously at DNA epigenetic mark 5-formyl-dC. However, insufficient information is available about the effects of these structurally distinct DPCs on transcription. In the present work, we employ a combination of in vitro assays, mass spectrometry, and molecular dynamics simulations to examine the ability of phage T7 RNA polymerase to bypass DPCs conjugated to the C7 position of 7-deaza-dG and the C5 position of dC. These model adducts represent endogenous DPCs induced by exposure to antitumor drugs and formed at epigenetics DNA marks, respectively. Our results reveal that DPCs containing full-length proteins significantly inhibit in vitro transcription by T7 RNA polymerase, while short DNA-peptide cross-links (DpCs) are bypassed. DpCs conjugated to the C7 position of 7-deaza-dG are transcribed with high fidelity, while the same polypeptides attached to the C5 position of dC induce transcription errors. Molecular dynamics simulations of DpCs conjugated either to the C5 atom of dC or the C7 position of 7-deaza-dG on the template strand in T7 RNA polymerase explain how the conjugated peptide can be accommodated in the narrow major groove of the DNA-RNA hybrid and how the modified dC can form a stable mismatch with the incoming ATP in the polymerase active site, allowing for transcriptional mutagenesis.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo
7.
J Biol Chem ; 294(48): 18387-18397, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31597704

RESUMO

5-Formylcytosine (5fC) is an endogenous epigenetic DNA mark introduced via enzymatic oxidation of 5-methyl-dC in DNA. We and others recently reported that 5fC can form reversible DNA-protein conjugates with histone proteins, likely contributing to regulation of nucleosomal organization and gene expression. The protein component of DNA-protein cross-links can be proteolytically degraded, resulting in smaller DNA-peptide cross-links. Unlike full-size DNA-protein cross-links that completely block replication and transcription, DNA-peptide cross-links can be bypassed by DNA and RNA polymerases and can potentially be repaired via the nucleotide excision repair (NER) pathway. In the present work, we constructed plasmid molecules containing reductively stabilized, site-specific 5fC-polypeptide lesions and employed a quantitative MS-based assay to assess their effects on transcription in cells. Our results revealed that the presence of DNA-peptide cross-link significantly inhibits transcription in human HEK293T cells but does not induce transcription errors. Furthermore, transcription efficiency was similar in WT and NER-deficient human cell lines, suggesting that the 5fC-polypeptide lesion is a weak substrate for NER. This finding was confirmed by in vitro NER assays in cell-free extracts from human HeLa cells, suggesting that another mechanism is required for 5fC-polypeptide lesion removal. In summary, our findings indicate that 5fC-mediated DNA-peptide cross-links dramatically reduce transcription efficiency, are poor NER substrates, and do not cause transcription errors.


Assuntos
Citosina/análogos & derivados , Replicação do DNA/genética , DNA/metabolismo , Peptídeos/metabolismo , Transcrição Gênica , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Citosina/química , Citosina/metabolismo , DNA/química , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células HEK293 , Células HeLa , Humanos , Peptídeos/química
8.
J Biol Chem ; 294(27): 10619-10627, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138652

RESUMO

DNA-protein cross-links can interfere with chromatin architecture, block DNA replication and transcription, and interfere with DNA repair. Here we synthesized a DNA 23-mer containing a site-specific DNA-peptide cross-link (DpC) by cross-linking an 11-mer peptide to the DNA epigenetic mark 5-formylcytosine in synthetic DNA and used it to generate a DpC-containing plasmid construct. Upon replication of the DpC-containing plasmid in HEK 293T cells, approximately 9% of progeny plasmids contained targeted mutations and 5% semitargeted mutations. Targeted mutations included C→T transitions and C deletions, whereas semitargeted mutations included several base substitutions and deletions near the DpC lesion. To identify DNA polymerases involved in DpC bypass, we comparatively studied translesion synthesis (TLS) efficiency and mutagenesis of the DpC in a series of cell lines with TLS polymerase knockouts or knockdowns. Knockdown of either hPol ι or hPol ζ reduced the mutation frequency by nearly 50%. However, the most significant reduction in mutation frequency (50%-70%) was observed upon simultaneous knockout of hPol η and hPol κ with knockdown of hPol ζ, suggesting that these TLS polymerases play a critical role in error-prone DpC bypass. Because TLS efficiency of the DpC construct was not significantly affected in TLS polymerase-deficient cells, we examined a possible role of replicative DNA polymerases in their bypass and determined that hPol δ and hPol ϵ can accurately bypass the DpC. We conclude that both replicative and TLS polymerases can bypass this DpC lesion in human cells but that mutations are induced mainly by TLS polymerases.


Assuntos
Citosina/análogos & derivados , Replicação do DNA , DNA/química , Peptídeos/química , Citosina/química , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , Primers do DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Mutação , Peptídeos/metabolismo
9.
Int J Cancer ; 145(4): 1099-1110, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30671927

RESUMO

Tumor-associated macrophages (TAMs), key immune cells in the tumor microenvironment, are shown to be closely correlated with the progression of non-small cell lung cancer (NSCLC). Cancer stem cells (CSCs) can contribute to NSCLC progression as well. We aimed to clarify whether TAMs promote the progression of NSCLC by mainly affecting the activities of CSCs. We found that TAM-like cells promoted CSC-like properties in NSCLC cells in vitro, which was mediated by TAM-derived IL-10. TAM-derived IL-10 promoted CSC-like properties of NSCLC cells through JAK1/STAT1/NF-κB/Notch1 signaling. Blockade of IL-10/JAK1 signaling inhibited TAM-mediated NSCLC tumor growth in vivo, and the TAM-mediated expression of CSC-related and mesenchymal-related genes in NSCLC. Lastly, expression levels of these signaling molecules were significantly correlated with survival of NSCLC patients. Therefore, IL-10/JAK1 signaling might be a potential therapeutic target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Interleucina-10/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/fisiologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Janus Quinase 1/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor Notch1/metabolismo , Fator de Transcrição STAT1/metabolismo , Microambiente Tumoral/fisiologia
10.
J Med Case Rep ; 12(1): 388, 2018 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-30579358

RESUMO

BACKGROUND: Mucosal melanoma of the head and neck is a rare malignant tumor associated with a poor prognosis. Surgery, chemotherapy, radiotherapy, and biotherapy are common strategies for treating mucosal melanoma of the head and neck. Episcleritis is an idiopathic, immune-mediated disease, and is classified into two types: simple episcleritis and nodular episcleritis. CASE PRESENTATION: In this case report we describe ocular changes involving simple episcleritis in a 65-year-old Chinese man with mucosal melanoma of the head and neck after treatment with interferon alfa-2b and radiotherapy. On the third day of interferon alfa-2b treatment, he began to develop simple episcleritis in his left eye. Moreover, the percentage of CD3+ T cells in lymphocytes from blood was increased after interferon alfa-2b treatment. After approximately 6 days, the symptoms of eye pain, hyperemia, and edema disappeared gradually. Then, after radiotherapy was performed three times, he again developed episcleritis in his left eye. The same symptoms of hyperemia and edema occurred again; CD3+ T cell frequency was also at a higher level. After approximately a week, all the symptoms disappeared completely. Simple treatment involving topical ofloxacin and phenylephrine was administered during the two periods of episcleritis. CONCLUSION: Episcleritis in this patient might have been due to the treatment with interferon alfa-2b and radiotherapy, leading to an increase in the level of CD3+ T cells and activation of immune system cells, which provides the guide for clinical clinicians.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/terapia , Interferon alfa-2/uso terapêutico , Melanoma/terapia , Radioterapia , Idoso , Antibacterianos/uso terapêutico , Antineoplásicos/efeitos adversos , Quimioterapia Adjuvante , Terapia Combinada , Neoplasias de Cabeça e Pescoço/fisiopatologia , Humanos , Interferon alfa-2/efeitos adversos , Masculino , Melanoma/fisiopatologia , Ofloxacino/uso terapêutico , Soluções Oftálmicas/uso terapêutico , Fenilefrina/uso terapêutico , Radioterapia/efeitos adversos , Resultado do Tratamento
12.
Chem Commun (Camb) ; 54(49): 6296-6299, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29851420

RESUMO

DNA-protein cross-links (DPCs) are super-bulky DNA adducts induced by common chemotherapeutic agents, reactive oxygen species, and aldehydes, and also formed endogenously as part of epigenetic regulation. Despite their presence in most cells and tissues, the biological effects of DPCs are poorly understood due to the difficulty of constructing site-specific DNA-protein conjugates. In the present work, a new approach of conjugating proteins to DNA using oxime ligation was used to generate model DPCs structurally analogous to lesions formed in cells. In our approach, proteins and peptides containing an unnatural oxy-Lys amino acid were cross-linked to DNA strands functionalized with 5-formyl-dC or 7-(2-oxoethyl)-7-deaza-dG residues using oxime ligation. The conjugation reaction was site-specific with respect to both protein and DNA, provided excellent reaction yields, and formed stable DPCs amenable to biological evaluation.


Assuntos
Reagentes de Ligações Cruzadas/química , Adutos de DNA/síntese química , DNA/química , Oximas/síntese química , Proteínas/química , Aminoaciltransferases/química , Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/síntese química , Cisteína Endopeptidases/química , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Lisina/análogos & derivados , Lisina/síntese química , Lisina/química , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Oligopeptídeos/síntese química , Oligopeptídeos/química , Anticorpos de Domínio Único/química
13.
Nucleic Acids Res ; 46(13): 6455-6469, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905846

RESUMO

5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA-protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130-14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and -1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.


Assuntos
Citosina/análogos & derivados , Replicação do DNA , DNA/química , Mutação , Citosina/química , DNA Polimerase Dirigida por DNA/metabolismo , Células HEK293 , Histonas , Humanos , Simulação de Dinâmica Molecular , Peptídeos
14.
Angew Chem Int Ed Engl ; 56(45): 14130-14134, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28898504

RESUMO

5-Formylcytosine (5fC) is an endogenous DNA modification frequently found within regulatory elements of mammalian genes. Although 5fC is an oxidation product of 5-methylcytosine (5mC), the two epigenetic marks show distinct genome-wide distributions and protein affinities, suggesting that they perform different functions in epigenetic signaling. A unique feature of 5fC is the presence of a potentially reactive aldehyde group in its structure. Herein, we show that 5fC bases in DNA readily form Schiff-base conjugates with Lys side chains of nuclear proteins in vitro and in vivo. These covalent protein-DNA complexes are reversible (t1/2 =1.8 h), suggesting that they contribute to transcriptional regulation and chromatin remodeling. On the other hand, 5fC-mediated DNA-protein cross-links, if present at replication forks or actively transcribed regions, may interfere with DNA replication and transcription.


Assuntos
DNA/química , Epigênese Genética , Proteínas/química , 5-Metilcitosina/química , Citosina/análogos & derivados , Citosina/química , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Espectrometria de Massas por Ionização por Electrospray , Temperatura , Transcrição Gênica
15.
Chem Res Toxicol ; 30(2): 669-677, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27951635

RESUMO

DNA-protein cross-links are formed upon exposure of cellular DNA to various agents, including antitumor drugs, UV light, transition metals, and reactive oxygen species. They are thought to contribute to cancer, aging, and neurodegenerative diseases. It has been proposed that DNA-protein cross-links formed in cells are subject to proteolytic degradation to the corresponding DNA-peptide cross-links (DpCs). To investigate the effects of DpCs on DNA replication, we have constructed plasmid DNA containing a 10-mer Myc peptide covalently linked to C7 of 7-deaza-dG, a hydrolytically stable mimic of N7-dG lesions. Following transfection in human embryonic kidney cells (HEK 293T), progeny plasmids were recovered and sequenced. Translesion synthesis (TLS) past DpC was 76% compared to that of the unmodified control. The DpC induced 20% targeted G → A and G → T plus 15% semitargeted mutations, notably at a guanine (G5) five bases 3' to the lesion site. Proteolytic digestion of the DpC reduced the mutation frequency considerably, indicating that the covalently attached 10-mer peptide was responsible for the observed mutations. TLS efficiency and targeted mutations were reduced upon siRNA knockdown of pol η, pol κ, or pol ζ, indicating that they participate in error-prone bypass of the DpC lesion. However, the semitargeted mutation at G5 was only reduced upon knockdown of pol ζ, suggesting its critical role in this type of mutations. Our results indicate that DpCs formed at the N7 position of guanine can induce both targeted and semitargeted mutations in human cells and that the TLS polymerases play a critical role in their error-prone bypass.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , Mutagênicos/química , Peptídeos/química , Células HEK293 , Humanos
16.
J Biol Chem ; 291(45): 23589-23603, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621316

RESUMO

DNA-protein cross-links (DPCs) are bulky DNA lesions that form both endogenously and following exposure to bis-electrophiles such as common antitumor agents. The structural and biological consequences of DPCs have not been fully elucidated due to the complexity of these adducts. The most common site of DPC formation in DNA following treatment with bis-electrophiles such as nitrogen mustards and cisplatin is the N7 position of guanine, but the resulting conjugates are hydrolytically labile and thus are not suitable for structural and biological studies. In this report, hydrolytically stable structural mimics of N7-guanine-conjugated DPCs were generated by reductive amination reactions between the Lys and Arg side chains of proteins/peptides and aldehyde groups linked to 7-deazaguanine residues in DNA. These model DPCs were subjected to in vitro replication in the presence of human translesion synthesis DNA polymerases. DPCs containing full-length proteins (11-28 kDa) or a 23-mer peptide blocked human polymerases η and κ. DPC conjugates to a 10-mer peptide were bypassed with nucleotide insertion efficiency 50-100-fold lower than for native G. Both human polymerase (hPol) κ and hPol η inserted the correct base (C) opposite the 10-mer peptide cross-link, although small amounts of T were added by hPol η. Molecular dynamics simulation of an hPol κ ternary complex containing a template-primer DNA with dCTP opposite the 10-mer peptide DPC revealed that this bulky lesion can be accommodated in the polymerase active site by aligning with the major groove of the adducted DNA within the ternary complex of polymerase and dCTP.


Assuntos
Adutos de DNA/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Peptídeos/química , Proteínas/química , Aminação , Sequência de Aminoácidos , Sequência de Bases , Adutos de DNA/genética , Guanina/química , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Proteínas Recombinantes/metabolismo
17.
Biochemistry ; 55(43): 6070-6081, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552084

RESUMO

The important industrial and environmental carcinogen 1,3-butadiene (BD) forms a range of adenine adducts in DNA, including N6-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine (N6-HB-dA), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N6-HMHP-dA), and N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N6,N6-DHB-dA). If not removed prior to DNA replication, these lesions can contribute to A → T and A → G mutations commonly observed following exposure to BD and its metabolites. In this study, base excision repair of BD-induced 2'-deoxyadenosine (BD-dA) lesions was investigated. Synthetic DNA duplexes containing site-specific and stereospecific (S)-N6-HB-dA, (R,S)-1,N6-HMHP-dA, and (R,R)-N6,N6-DHB-dA adducts were prepared by a postoligomerization strategy. Incision assays with nuclear extracts from human fibrosarcoma (HT1080) cells have revealed that BD-dA adducts were recognized and cleaved by a BER mechanism, with the relative excision efficiency decreasing in the following order: (S)-N6-HB-dA > (R,R)-N6,N6-DHB-dA > (R,S)-1,N6-HMHP-dA. The extent of strand cleavage at the adduct site was decreased in the presence of BER inhibitor methoxyamine and by competitor duplexes containing known BER substrates. Similar strand cleavage assays conducted using several eukaryotic DNA glycosylases/lyases (AAG, Mutyh, hNEIL1, and hOGG1) have failed to observe correct incision products at the BD-dA lesion sites, suggesting that a different BER enzyme may be involved in the removal of BD-dA adducts in human cells.


Assuntos
Butadienos/química , Reparo do DNA , Desoxiadenosinas/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos
18.
Acc Chem Res ; 48(6): 1631-44, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26032357

RESUMO

Noncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural complexity complicates structural and biological studies of DPC lesions. Two general strategies have been developed for creating DNA strands containing structurally defined, site-specific DPCs. Enzymatic methodologies that trap DNA modifying proteins on their DNA substrate are site specific and efficient, but do not allow for systematic studies of DPC lesion structure on their biological outcomes. Synthetic methodologies for DPC formation are based on solid phase synthesis of oligonucleotide strands containing protein-reactive unnatural DNA bases. The latter approach allows for a wider range of protein substrates to be conjugated to DNA and affords a greater flexibility for the attachment sites within DNA. In this Account, we outline the chemistry of DPC formation in cells, describe our recent efforts to identify the cross-linked proteins by mass spectrometry, and discuss various methodologies for preparing DNA strands containing structurally defined, site specific DPC lesions. Polymerase bypass experiments conducted with model DPCs indicate that the biological outcomes of these bulky lesions are strongly dependent on the peptide/protein size and the exact cross-linking site within DNA. Future studies are needed to elucidate the mechanisms of DPC repair and their biological outcomes in living cells.


Assuntos
DNA/química , Proteínas/química , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Estrutura Molecular , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...