Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 200: 106606, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019292

RESUMO

The gut microbiota produces metabolites that enrich the host metabolome and play a part in host physiology, including brain functions. Yet the biological mediators of this gut-brain signal transduction remain largely unknown. In this study, the possible role of the gut microbiota metabolite indole, originating from tryptophan, was investigated. Oral administration of indole to simulate microbial overproduction of this compound in the gut consistently led to impaired locomotion and anxiety-like behaviour in both C3H/HeN and C57BL/6J mice. By employing c-Fos protein expression mapping in mice, we observed a noticeable increase in brain activation within the dorsal motor nucleus of the vagus nerve (DMX) and the locus coeruleus (LC) regions in a dose-dependent manner. Further immune co-labelling experiments elucidated that the primary cells activated within the LC were tyrosine hydroxylase positive. To delve deeper into the mechanistic aspects, we conducted chemogenetic activation experiments on LC norepinephrine neurons with two doses of clozapine N-oxide (CNO). Low dose of CNO at 0.5 mg/kg induced no change in locomotion but anxiety-like behaviour, while high dose of CNO at 2 mg/kg resulted in locomotion impairment and anxiety-like behaviour. These findings support the neuroactive roles of indole in mediating gut-brain communication. It also highlights the LC as a novel hub in the gut-brain axis, encouraging further investigations.

2.
Zool Res ; 45(4): 805-820, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894523

RESUMO

The organ-specific toxicity resulting from microplastic (MP) exposure has been extensively explored, particularly concerning the gut, liver, testis, and lung. However, under natural conditions, these effects are not restricted to specific organs or tissues. Investigating whether MP exposure presents a systemic threat to an entire organism, impacting factors such as lifespan, sleep, and fecundity, is essential. In this study, we investigated the effects of dietary exposure to two different doses of MPs (1-5 µm) using the terrestrial model organism Drosophila melanogaster. Results indicated that the particles caused gut damage and remained within the digestive system. Continuous MP exposure significantly shortened the lifespan of adult flies. Even short-term exposure disrupted sleep patterns, increasing the length of daytime sleep episodes. Additionally, one week of MP exposure reduced ovary size, with a trend towards decreased egg-laying in mated females. Although MPs did not penetrate the brain or ovaries, transcriptome analysis revealed altered gene expression in these tissues. In the ovary, Gene Ontology (GO) analysis indicated genotoxic effects impacting inflammation, circadian regulation, and metabolic processes, with significant impacts on extracellular structure-related pathways. In the brain, GO analysis identified changes in pathways associated with proteolysis and carbohydrate metabolism. Overall, this study provides compelling evidence of the systemic negative effects of MP exposure, highlighting the urgent need to address and mitigate environmental MP pollution.


Assuntos
Drosophila melanogaster , Longevidade , Microplásticos , Ovário , Sono , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Feminino , Ovário/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Sono/efeitos dos fármacos , Microplásticos/toxicidade , Masculino , Tamanho do Órgão/efeitos dos fármacos
3.
Mar Pollut Bull ; 203: 116422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749155

RESUMO

The COVID-19 pandemic has resulted in unprecedented plastic pollution from single-used personal protective equipment (PPE), especially face masks, in coastal and marine environments. The secondary pollutants, microplastics from face masks (mask MP), rise concern about their detrimental effects on marine organisms, terrestrial organisms and even human. Using a mouse model, oral exposure to mask MP at two doses, 0.1 and 1 mg MP/day for 21 days, caused no change in animal locomotion, total weight, or sperm counts, but caused damage to sperm motility with increased curvilinear velocity (VCL). The high-dose mask MP exposure caused a significant decrease in linearity (LIN) of sperm motility. Further testicular transcriptomic analysis revealed perturbed pathways related to spermatogenesis, oxidative stress, inflammation, metabolism and energy production. Collectively, our findings substantiate that microplastics from face masks yield adverse effects on mammalian reproductive capacity, highlighting the need for improved plastic waste management and development of environmentally friendly materials.


Assuntos
Máscaras , Microplásticos , Motilidade dos Espermatozoides , Animais , Masculino , Microplásticos/toxicidade , Camundongos , Motilidade dos Espermatozoides/efeitos dos fármacos , COVID-19 , Testículo/efeitos dos fármacos
4.
Toxicology ; 506: 153834, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763425

RESUMO

INTRODUCTION: Growing concerns regarding the reproductive toxicity associated with daily life exposure to micro-/nano-plastics (abbreviated as MNPs) have become increasingly prevalent. In reality, MNPs exposure involves a heterogeneous mixture of MNPs of different sizes rather than a single size. METHODS: In this study, an oral exposure mouse model was used to evaluate the effects of MNPs of four size ranges: 25-30 nm, 1-5 µm, 20-27 µm, and 125-150 µm. Adult male C57BL/6 J mice were administered environmentally relevant concentrations of 0.1 mg MNPs/day for 21 days. After that, open field test and computer assisted sperm assessment (CASA) were conducted. Immunohistochemical analyses of organ and cell type localization of MNPs were evaluated. Testicular transcriptome analysis was carried out to understand the molecular mechanisms. RESULTS: Our result showed that MNPs of different size ranges all impaired sperm motility, with a decrease in progressive sperm motility, linearity and straight-line velocity of sperm movement. Alterations did not manifest in animal locomotion, body weight, or sperm count. Noteworthy effects were most pronounced in the smaller MNPs size ranges (25-30 nm and 1-5 µm). Linear regression analysis substantiated a negative correlation between the size of MNPs and sperm curvilinear activity. Immunohistochemical analysis unveiled the intrusions of 1-5 µm MNPs, but not 20-27 µm and 125-150 µm MNPs, into Leydig cells and testicular macrophages. Further testicular transcriptomic analysis revealed perturbations in pathways related to spermatogenesis, oxidative stress, and inflammation. Particularly within the 1-5 µm MNPs group, a heightened perturbation in pathways linked to spermatogenesis and oxidative stress was observed. CONCLUSIONS: Our data support the size-dependent impairment of MNPs on sperm functionality, underscoring the pressing need for apprehensions about and interventions against the escalation of environmental micro-/nano-plastics contamination. This urgency is especially pertinent to small-sized MNPs.


Assuntos
Camundongos Endogâmicos C57BL , Microplásticos , Tamanho da Partícula , Motilidade dos Espermatozoides , Testículo , Animais , Masculino , Motilidade dos Espermatozoides/efeitos dos fármacos , Microplásticos/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Camundongos , Espermatozoides/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos
5.
Biochem Biophys Res Commun ; 670: 1-11, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37271034

RESUMO

Primary liver hepatocellular carcinoma (HCC) is the third most deadly malignancy worldwide,in part, because it is often diagnosed at an advanced stage. Thus, molecular markers are needed to aid in the early diagnosis and treatment of HCC. Expression of abnormal mesoderm posterior-1 (MESP1) promotes tumorigenesis; however,its role in the regulation of HCC proliferation, apoptosis,and invasion is unknown. Here,we analyzed data in The Cancer Genome Atlas (TCGA)and Genotype Tissue Expression (GTEx) databases on the pan-cancer expression of MESP1 and its relationship with clinical characteristics and prognosis of patients with HCC. The expression of MESP1 was measured in 48 HCC tissues using immunohistochemical staining,and the results were correlated with clinical stage, tumor differentiation, tumor size,and metastasis. MESP1 expression was downregulated using small interfering RNA (siRNA) in the HCC cell lines HepG2 and Hep3B,and cell viability, proliferation,cell cycle, apoptosis,and invasion were analyzed. Finally,we also evaluated the tumor suppression effect of MESP1 downregulation combined with 5-fluorouracil (5-FU) treatment. Our results showed that MESP1 is a pan-oncogene associated with poor prognosis in patients with HCC. siRNA-induced downregulation of MESP1 expression in HepG2 and Hep3B cells exhibited downregulation of ß-catenin and GSK3ß expression 48h after transfection, along with an increase in apoptosis rate, arrest in the G1-S phase,and a decrease in mitochondrial membrane potential. Moreover,the expression levels of c-Myc, PARP1, bcl2, Snail1, MMP9, and immune checkpoint genes (TIGIT, CTLA4,LAG3,CD274,and PDCD1) were downregulated, while those of caspase3 and E-cadherin were upregulated. Tumor cells also showed decreased migration ability. Furthermore, siRNA interference of MESP1 expression combined with 5-FU-treatment of HCC cells significantly enhanced the G1-S phase block and apoptosis. MESP1 showed an aberrant high expression in HCC and was associated with poor clinical outcomes; therefore, MESP1 may be a potential target for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fluoruracila/farmacologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 886085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813649

RESUMO

Male reproductive function is key to the continuation of species and is under sophisticated regulation, challenged by various stressors including inflammation. In the lipopolysaccharide (LPS) intraperitoneal injection-induced acute systemic inflammation, male fecundity was compromised with decreased testosterone level, damaged spermatogenesis, and downregulations of testicular gene expression levels involved in steroidogenesis regulation and blood-testis barrier. It is also noteworthy that the testis is more sensitive to acute stress caused by LPS-induced systemic inflammation. LPS treatment resulted in lower testicular gene expression levels of steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and cytochrome P450 family 11 subfamily B member 1 after LPS treatment, while no such decrease was found in the adrenal gland. In parallel to the significant decreases in testicular intercellular adhesion molecule 1, tight junction protein 1, and gap junction alpha-1 protein gene expression with LPS treatment, no decrease was found in the epididymis. In the brain, LPS treatment caused higher medial preoptic area (mPOA) activation in the hypothalamus, which is accompanied by elevated blood follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, suggesting a disturbed hypothalamic-pituitary-gonad axis function. Besides mPOA, brain c-fos mapping and quantitative analysis demonstrated a broad activation of brain nuclei by LPS, including the anterior cingulate cortex, lateral septum, paraventricular nucleus of the hypothalamus, basolateral amygdala, ventral tegmental area, lateral habenular nucleus, locus coeruleus, Barrington's nucleus, and the nucleus of the solitary tract, accompanied by abnormal animal behavior. Our data showed that LPS-induced inflammation caused not only local testicular damage but also a systemic disturbance at the brain-testis axis level.


Assuntos
Lipopolissacarídeos , Área Pré-Óptica , Animais , Hormônio Foliculoestimulante , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Hormônio Luteinizante/metabolismo , Masculino , Área Pré-Óptica/metabolismo
7.
Sci Total Environ ; 844: 156881, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35753445

RESUMO

Previous studies have examined the effects of perfluorooctanesulfonic acid (PFOS) on disruption of the blood-testis barrier and spermatogenesis. Sertoli and Leydig cells were perturbed, resulting in a decrease in testosterone levels and sperm counts. However, the effects of PFOS on male fecundity are not limited to the testes. In this study, we demonstrated that oral PFOS exposure (1 µg/g BW and 5 µg/g BW) decreased the function of the Luteinizing hormone (LH)/Luteinizing hormone receptor (LHr) and decreased epididymal sperm motility. Consistently, testicular transcriptome analysis revealed that PFOS altered the expression of a cluster of genes associated with sperm motility and steroidogenesis. In mice exposed to PFOS, c-Fos immunostaining showed activation of the lateral septal nucleus (LS), paraventricular thalamus (PVT), locus coeruleus (LC), which are known to be related to anxiety-like behaviors. Metabolomic analyses of the hypothalamus revealed that exposure to PFOS perturbed the translation of proteins, as well as the biosynthesis of neurotransmitters and neuromodulators. Altogether, the activation of brain nuclei, shift of hypothalamic metabolome, and reduction of LH/LHr circuit resulted from PFOS exposure suggested the toxicant's systematic effects on male reproduction.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Ácidos Alcanossulfônicos , Animais , Fertilidade , Fluorocarbonos , Hipotálamo/metabolismo , Masculino , Camundongos , Testículo , Testosterona/metabolismo
8.
J Hazard Mater ; 416: 126069, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492895

RESUMO

Concerns that airborne microplastics (MP) may be detrimental to human health are rising. However, research on the effects of MP on the respiratory system are limited. We tested the effect of MP exposure on both normal and asthmatic pulmonary physiology in mice. We show that MP exposure caused pulmonary inflammatory cell infiltration, bronchoalveolar macrophage aggregation, increased TNF-α level in bronchoalveolar lavage fluid (BALF), and increased plasma IgG1 production in normal mice. MP exposure also affected asthma symptoms by increasing mucus production and inflammatory cell infiltration with notable macrophage aggregation. Further, we found co-labeling of macrophage markers with MP incorporating fluorescence, which indicates phagocytosis of the MP by macrophages. A comparative transcriptomic analysis showed that MP exposure altered clusters of genes related to immune response, cellular stress response, and programmed cell death. A bioinformatics analysis further uncovered the molecular mechanism whereby MP stimulated production of tumor necrosis factor and immunoglobulins to activate a group of transmembrane B-cell antigens, leading to the modulation of cellular stress and programmed cell death in the asthma model. In summary, we show that MP exposure had detrimental effects on the respiratory system in both healthy and asthmatic mice, which calls for urgent discourse and action to mitigate environmental microplastic pollutants.


Assuntos
Asma , Microplásticos , Animais , Asma/induzido quimicamente , Líquido da Lavagem Broncoalveolar , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Plásticos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31681174

RESUMO

The pathogenic factors of the complex epidemic disorder-obesity, have expanded from genetic background, endocrine factors, abnormal feeding behaviors, and direct neural control of adipose tissue physiology. As a chronic metabolic disease, it is important to find new potential therapeutic targets and locate a sensitive time window for intervention. In this study, we focus on the early stage of a high-fat diet mouse model: a short-term 3-week treatment. Our results showed that this short-term 3-week HFD can already induce significant body weight gain, increased adipocyte size and surprisingly, anxiety-like behavior of the animals. Then we tried the early intervention with metformin, already reported for its effects in long-term HFD induced obesity. For a short-term 3-week co-treatment, metformin alleviated the HFD-induced increase in body weight, the increase in adipocyte size and furthermore, the anxiety-like behavior. Differences were noted among the normal diet (ND), HFD, and HFD with metformin co-treatment groups in gut microbiota, including its composition and diversity. The possible involvement of gut microbiota cannot be ruled out. Intense phospho-AMPK staining was found in the metformin treatment group in the habenular nuclei, hippocampus and basal ganglia of the brain compared with the HFD group, implying that the anxiolytic effect of metformin could be due to the direct activation of the AMPK pathway in the anxiety-related brain nuclei.

10.
Zootaxa ; 4429(1): 165-172, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30313286

RESUMO

Two new species in the genus Chibiraga, C. houshuaii sp. nov. and C. yukei sp. nov., are described based on specimens collected in Yunnan Province and Sichuan Province, respectively. Illustrations depicting male adults and male genitalia are provided, along with venation patterns and a distribution map of the genus Chibiraga. COI DNA fragments of C. yukei sp. nov. and both sexes of C. banghaasi (Hering Hopp, 1927) are also depicted.


Assuntos
Distribuição Animal , Lepidópteros , Animais , China , Feminino , Masculino
11.
Zootaxa ; 4457(1): 189-196, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30314188

RESUMO

New information of the genus Barsine Walker, 1854 is provided. A new species, Barsine paraprominens Huang Wang sp. nov. is described from Pailong, SE Xizang. Four species: B. pseudomactans Volynkin Cerný, 2016, B. anomala (Elwes, 1890), B. pseudocardinalis Volynkin Cerný, 2017 and B. ustrina Cerný, 2009 are recorded as new to China. The female genitalia of B. ustrina are described for the first time. Adults and genitalia of all species mentioned are illustrated.


Assuntos
Mariposas , Animais , China , Feminino , Genitália
12.
PLoS One ; 8(9): e74109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086312

RESUMO

CpG repression in RNA viruses has been known for decades, but a reasonable explanation has not yet been proposed to explain this phenomenon. In this study, we calculated the CpG odds ratio of all RNA viruses that have available genome sequences and analyzed the correlation with their genome polarity, base composition, synonymous codon usage, phylogenetic relationship, and host. The results indicated that the viral base composition, synonymous codon usage and host selection were the dominant factors that determined the CpG bias in RNA viruses. CpG usage variation between the different viral groups was caused by different combinations of these pressures, which also differed from each other in strength. The consistent under-representation of CpG usage in -ssRNA viruses is determined predominantly by base composition, which may be a consequence of the U/A preferred mutation bias of -ssRNA viruses, whereas the CpG usage of +ssRNA viruses is affected greatly by their hosts. As a result, most +ssRNA viruses mimic their hosts' CpG usage. Unbiased CpG usage in dsRNA viruses is most likely a result of their dsRNA genome, which allows the viruses to escape from the host-driven CpG elimination pressure. CpG was under-represented in all reverse-transcribing viruses (RT viruses), suggesting that DNA methylation is an important factor affecting the CpG usage of retroviruses. However, vertebrate-infecting RT viruses may also suffer host' CpG elimination pressure that also acts on +ssRNA viruses, which results in further under-representation of CpG in the vertebrate-infecting RT viruses.


Assuntos
Ilhas de CpG , Vírus de RNA/genética , Composição de Bases , Códon , Interações Hospedeiro-Patógeno , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...