Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 439: 129603, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35872454

RESUMO

Hydroxyl radical (•OH) in fuel combustion gas seriously damages human health. The techniques for simultaneously detecting and scavenging •OH in these gases are limited by poor thermal resistance. To meet this challenge, herein, metal organic frameworks (MOFs) with high thermal stability (80-400 °C) and dual function (•OH detection and elimination) are developed by coordinating Ce ions with terephthalic acid (TA) (Ce-BDC). Due to the reversible conversion between Ce3+ and Ce4+, and the high concentration of Ce3+ on the surface of Ce-BDC MOFs (89.6%), an •OH scavenging efficiency over 90% is realized. Ratiometric fluorescence (I440 nm/I355 nm) detection of •OH with a low detection limit of ∼4 µM is established by adopting Ce ions as an internal standard and TA as an •OH-responsive fluorophore. For real applications, the Ce-BDC MOFs demonstrate excellent •OH detection sensitivity and high •OH scavenging efficiency in gas produced from cigarettes, wood fiber and machine oil. Mouse model results show that the damage caused by •OH in cigarette smoke can be greatly reduced by Ce-BDC MOFs. This work provides a promising strategy for sensitively detecting and efficiently eliminating •OH in fuel combustion gas.


Assuntos
Cério , Estruturas Metalorgânicas , Animais , Gases , Humanos , Limite de Detecção , Camundongos , Ácidos Ftálicos
2.
RSC Adv ; 11(50): 31385-31394, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496890

RESUMO

Heterojunction construction has been proved to be an effective way to enhance photocatalysis performance. In this work, Cl-doped carbon nitride nanofibers (Cl-CNF) with broadband light harvesting capacity were in situ grown on carbon nitride nanosheets (CNS) by a facile hydrothermal method to construct a type II heterojunction. Benefiting from the joint effect of the improved charge carriers separation efficiency and a broadened visible light absorption range, the optimal heterostructure of Cl-CNF/CNS exhibits a H2O2 evolution rate of 247.5 µmol g-1 h-1 under visible light irradiation, which is 3.4 and 3.1 times as much as those of Cl-CNF (72.2 µmol g-1 h-1) and CNS (80.2 µmol g-1 h-1), respectively. Particularly, the heterojunction nanostructure displays an apparent quantum efficiency of 23.67% at 420 nm. Photoluminescence spectra and photocurrent measurements both verified the enhanced charge carriers separation ability. Our work provides a green and environmentally friendly strategy for H2O2 production by elaborate nanostructure design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...