Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4363, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778087

RESUMO

Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.


Assuntos
Neoplasias da Mama , Microfluídica , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto , Medicina de Precisão/métodos , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Microfluídica/métodos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
2.
Front Neuroanat ; 18: 1364675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650594

RESUMO

Interactions between feedback connections from higher cortical areas and local horizontal connections within primary visual cortex (V1) were shown to play a role in contextual processing in different behavioral states. Layer 1 (L1) is an important part of the underlying network. This cell-sparse layer is a target of feedback and local inputs, and nexus for contacts onto apical dendrites of projection neurons in the layers below. Importantly, L1 is a site for coupling inputs from the outside world with internal information. To determine whether all of these circuit elements overlap in L1, we labeled the horizontal network within mouse V1 with anterograde and retrograde viral tracers. We found two types of local horizontal connections: short ones that were tangentially limited to the representation of the point image, and long ones which reached beyond the receptive field center, deep into its surround. The long connections were patchy and terminated preferentially in M2 muscarinic acetylcholine receptor-negative (M2-) interpatches. Anterogradely labeled inputs overlapped in M2-interpatches with apical dendrites of retrogradely labeled L2/3 and L5 cells, forming module-selective loops between topographically distant locations. Previous work showed that L1 of M2-interpatches receive inputs from the lateral posterior thalamic nucleus (LP) and from a feedback network from areas of the medial dorsal stream, including the secondary motor cortex. Together, these findings suggest that interactions in M2-interpatches play a role in processing visual inputs produced by object-and self-motion.

3.
IEEE Trans Biomed Circuits Syst ; 18(3): 622-635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393851

RESUMO

Recent years have witnessed significant advances brought by microfluidic biochips in automating biochemical protocols. Accurate preparation of fluid samples is an essential component of these protocols, where concentration prediction and generation are critical. Equipped with the advantages of convenient fabrication and control, microfluidic mixers demonstrate huge potential in sample preparation. Although finite element analysis (FEA) is the most commonly used simulation method for accurate concentration prediction of a given microfluidic mixer, it is time-consuming with poor scalability for large biochip sizes. Recently, machine learning models have been adopted in concentration prediction, with great potential in enhancing the efficiency over traditional FEA methods. However, the state-of-the-art machine learning-based method can only predict the concentration of mixers with fixed input flow rates and fixed sizes. In this paper, we propose a new concentration prediction method based on graph neural networks (GNNs), which can predict output concentrations for microfluidic mixters with variable input flow rates. Moreover, a transfer learning method is proposed to transfer the trained model to mixers of different sizes with reduced training data. Experimental results show that, for microfluidic mixers with fixed input flow rates, the proposed method obtains an average reduction of 88% in terms of prediction errors compared with the state-of-the-art method. For microfluidic mixers with variable input flow rates, the proposed method reduces the prediction error by 85% on average. Besides, the proposed transfer learning method reduces the training data by 84% for extending the pre-trained model for microfluidic mixers of different sizes with acceptable prediction error.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Análise de Elementos Finitos , Microfluídica/métodos , Microfluídica/instrumentação
4.
Annu Rev Neurosci ; 46: 259-280, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972612

RESUMO

Radial cell columns are a hallmark feature of cortical architecture in many mammalian species. It has long been held, based on the lack of orientation columns, that such functional units are absent in rodent primary visual cortex (V1). These observations led to the view that rodent visual cortex has a fundamentally different network architecture than that of carnivores and primates. While columns may be lacking in rodent V1, we describe in this review that modular clusters of inputs to layer 1 and projection neurons in the layers below are prominent features of the mouse visual cortex. We propose that modules organize thalamocortical inputs, intracortical processing streams, and transthalamic communications that underlie distinct sensory and sensorimotor functions.


Assuntos
Córtex Visual , Camundongos , Animais , Retroalimentação , Córtex Visual/fisiologia , Interneurônios , Sensação , Vias Visuais/fisiologia , Mamíferos
5.
iScience ; 25(3): 103934, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35194575

RESUMO

Here, we evaluated the immune properties of the HLA-A2 restricted CD8+ T cell epitopes containing mutations from B.1.1.7, and furthermore performed a comprehensive analysis of the SARS-CoV-2 specific CD8+ T cell responses from COVID-19 convalescent patients and SARS-CoV-2 vaccinees recognizing the ancestral Wuhan strain compared to B.1.1.7. First, most of the predicted CD8+ T cell epitopes showed proper binding with HLA-A2, whereas epitopes from B.1.1.7 had lower binding capability than those from the ancestral strain. In addition, these peptides could effectively induce the activation and cytotoxicity of CD8+ T cells. Our results further showed that at least two site mutations in B.1.1.7 resulted in a decrease in CD8+ T cell activation and a possible immune evasion, namely A1708D mutation in ORF1ab1707-1716 and I2230T mutation in ORF1ab2230-2238. Our current analysis provides information that contributes to the understanding of SARS-CoV-2-specific CD8+ T cell responses elicited by infection of mutated strains or vaccination.

6.
Nat Commun ; 13(1): 503, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082302

RESUMO

Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex.


Assuntos
Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Biologia Computacional , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Visual/patologia , Vias Visuais/patologia
7.
J Neurosci ; 41(22): 4809-4825, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33849948

RESUMO

The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Navegação Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Córtex Entorrinal/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Córtex Visual/citologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31709198

RESUMO

Little is known regarding differences in the gut microbiomes of rheumatoid arthritis (RA) patients and healthy cohorts in China. This study aimed to identify differences in the fecal microbiomes of 66 Chinese patients with RA and 60 healthy Chinese controls. The V3-V4 variable regions of bacterial 16S rRNA genes were sequenced with the Illumina system to define the bacterial composition. The alpha-diversity index of the microbiome of the RA patients was significantly lower than that of the control group. The bacterial genera Bacteroides (p = 0.02202) and Escherichia-Shigella (p = 0.03137) were more abundant in RA patients. In contrast, Lactobacillus (p = 0.000014), Alloprevotella (p = 0.0000008615), Enterobacter (p = 0.000005759), and Odoribacter (p = 0.0000166) were less abundant in the RA group than in the control group. Spearman correlation analysis of blood physiological measures of RA showed that bacterial genera such as Dorea and Ruminococcus were positively correlated with RF-IgA and anti-CCP antibodies. Furthermore, Alloprevotella and Parabacteroides were positively correlated with the erythrocyte sedimentation rate, and Prevotella-2 and Alloprevotella were positively correlated with C-reactive protein, both biomarkers of inflammation. These findings suggest that the gut microbiota may contribute to RA development via interactions with the host immune system.


Assuntos
Artrite Reumatoide/etiologia , Suscetibilidade a Doenças , Microbioma Gastrointestinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/metabolismo , Bactérias/classificação , Bactérias/genética , Biomarcadores , China/epidemiologia , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Metagenoma , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
9.
Neuron ; 104(3): 588-600.e5, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31623918

RESUMO

Whether mouse visual cortex contains orderly feature maps is debated. The overlapping pattern of geniculocortical inputs with M2 muscarinic acetylcholine receptor-rich patches in layer 1 (L1) suggests a non-random architecture. Here, we found that L1 inputs from the lateral posterior thalamus (LP) avoid patches and target interpatches. Channelrhodopsin-2-assisted mapping of excitatory postsynaptic currents (EPSCs) in L2/3 shows that the relative excitation of parvalbumin-expressing interneurons (PVs) and pyramidal neurons (PNs) by dLGN, LP, and cortical feedback is distinct and depends on whether the neurons reside in clusters aligned with patches or interpatches. Paired recordings from PVs and PNs show that unitary inhibitory postsynaptic currents (uIPSCs) are larger in interpatches than in patches. The spatial clustering of inhibition is matched by dense clustering of PV terminals in interpatches. The results show that the excitation/inhibition balance across V1 is organized into patch and interpatch subnetworks, which receive distinct long-range inputs and are specialized for the processing of distinct spatiotemporal features.


Assuntos
Corpos Geniculados/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Núcleos Laterais do Tálamo/fisiologia , Camundongos , Vias Neurais , Parvalbuminas/metabolismo
10.
Neuron ; 87(3): 632-43, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26247867

RESUMO

Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat, and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity, whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2- zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams.


Assuntos
Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Haplorrinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Estimulação Luminosa/métodos , Ratos , Ratos Long-Evans , Córtex Visual/citologia , Vias Visuais/citologia
11.
J Neurophysiol ; 109(3): 792-802, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136340

RESUMO

In the auditory system of the big brown bat (Eptesicus fuscus), paired conditioned tonal (CS) and unconditioned leg stimuli (US) for auditory fear conditioning elicit tone-specific plasticity represented by best-frequency (BF) shifts that are augmented by acetylcholine, whereas unpaired CS and US for pseudoconditioning elicit a small BF shift and prominent nonspecific plasticity at the same time. The latter represents the nonspecific augmentations of auditory responses accompanied by the broadening of frequency tuning and decrease in threshold. It is unknown which neuromodulators are important in evoking the nonspecific plasticity. We found that histamine (HA) and an HA3 receptor (HA3R) agonist (α-methyl-HA) decreased, but an HA3R antagonist (thioperamide) increased, cortical auditory responses; that the HA3R agonist applied to the primary auditory cortex before pseudoconditioning abolished the nonspecific augmentation in the cortex without affecting the small cortical BF shift; and that antagonists of acetylcholine, norepinephrine, dopamine, and serotonin receptors did not abolish the nonspecific augmentation elicited by pseudoconditioning. The histaminergic system plays an important role in eliciting the arousal and defensive behavior, possibly through nonspecific augmentation. Thus HA modulates the nonspecific augmentation, whereas acetylcholine amplifies the BF shifts. These two neuromodulators may mediate differential gating of cortical plasticity.


Assuntos
Córtex Auditivo/fisiologia , Histamínicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Estimulação Acústica , Adrenérgicos/farmacologia , Animais , Quirópteros , Colinérgicos/farmacologia , Condicionamento Psicológico , Potenciais Evocados Auditivos/efeitos dos fármacos , Serotoninérgicos/farmacologia
12.
J Neurophysiol ; 102(2): 941-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474174

RESUMO

Experience-dependent plasticity in the central sensory systems depends on activation of both the sensory and neuromodulatory systems. Sensitization or nonspecific augmentation of central auditory neurons elicited by pseudo-conditioning with unpaired conditioning tonal (CS) and unconditioned electric leg (US) stimuli is quite different from tone-specific plasticity, called best frequency (BF) shifts, of the neurons elicited by auditory fear conditioning with paired CS and US. Therefore the neural circuits eliciting the nonspecific augmentation must be different from that eliciting the BF shifts. We first examined plastic changes in the response properties of collicular neurons of the big brown bat elicited by pseudo-conditioning and found that it elicited prominent nonspecific augmentation-an auditory response increase, a frequency-tuning broadening, and a threshold decreas-and that, in addition, it elicited a small short-lasting BF shift only when the CS frequency was 5 kHz lower than the BF of a recorded neuron. We examined the role of acetylcholine and the auditory and somatosensory cortices in these collicular changes. The development of the nonspecific augmentation was affected little by a muscarinic acetylcholine receptor antagonist applied to the inferior colliculus and by a GABA(A) receptor agonist applied to the auditory or somatosensory cortex. However, these drugs abolished the small short-lasting BF shift as they abolished the large long-lasting cortical and short-lasting collicular BF shifts elicited by the conditioning. These results indicate that, different from the BF shift, the nonspecific augmentation of the inferior colliculus depends on neither the cholinergic neuromodulator nor the auditory and somatosensory cortices.


Assuntos
Acetilcolina/metabolismo , Córtex Auditivo/fisiologia , Colículos Inferiores/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Estimulação Acústica , Potenciais de Ação , Animais , Quirópteros , Condicionamento Clássico/fisiologia , Medo , Agonistas de Receptores de GABA-A , Microeletrodos , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Receptores Muscarínicos/metabolismo , Fatores de Tempo
13.
J Neurophysiol ; 100(3): 1384-96, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18596186

RESUMO

Experience-dependent plastic changes in the central sensory systems are due to activation of both the sensory and neuromodulatory systems. Nonspecific changes of cortical auditory neurons elicited by pseudoconditioning are quite different from tone-specific changes of the neurons elicited by auditory fear conditioning. Therefore the neural circuit evoking the nonspecific changes must also be different from that evoking the tone-specific changes. We first examined changes in the response properties of cortical auditory neurons of the big brown bat elicited by pseudoconditioning with unpaired tonal (CS(u)) and electric leg (US(u)) stimuli and found that it elicited nonspecific changes to CS(u) (a heart-rate decrease, an auditory response increase, a broadening of frequency tuning, and a decrease in threshold) and, in addition, a small tone-specific change to CS(u) (a small short-lasting best-frequency shift) only when CS(u) frequency was 5 kHz lower than the best frequency of a recorded neuron. We then examined the effects of drugs on the cortical changes elicited by the pseudoconditioning. The development of the nonspecific changes was scarcely affected by atropine (a muscarinic cholinergic receptor antagonist) and mecamylamine (a nicotinic cholinergic receptor antagonist) applied to the auditory cortex and by muscimol (a GABAA-receptor agonist) applied to the somatosensory cortex. However, these drugs abolished the small short-lasting tone-specific change as they abolished the large long-lasting tone-specific change elicited by auditory fear conditioning. Our current results indicate that, different from the tone-specific change, the nonspecific changes depend on neither the cholinergic neuromodulator nor the somatosensory cortex.


Assuntos
Córtex Auditivo/citologia , Condicionamento Clássico , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores Colinérgicos/fisiologia , Córtex Somatossensorial/fisiologia , Som , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Atropina/farmacologia , Quirópteros , Estimulação Elétrica , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Antagonistas Muscarínicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Psicoacústica , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação , Análise Espectral , Fatores de Tempo
14.
J Neurosci ; 27(18): 4910-8, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17475799

RESUMO

In the awake big brown bat, 30 min auditory fear conditioning elicits conditioned heart rate decrease and long-term best frequency (BF) shifts of cortical auditory neurons toward the frequency of the conditioned tone; 15 min conditioning elicits subthreshold cortical BF shifts that can be augmented by acetylcholine. The fear conditioning causes stress and an increase in the cortical serotonin (5-HT) level. Serotonergic neurons in the raphe nuclei associated with stress and fear project to the cerebral cortex and cholinergic basal forebrain. Recently, it has been shown that 5-HT(2A) receptors are mostly expressed on pyramidal neurons and their activation improves learning and memory. We applied 5-HT, an agonist (alpha-methyl-5-HT), or an antagonist (ritanserin) of 5-HT(2A) receptors to the primary auditory cortex and discovered the following drug effects: (1) 5-HT had no effect on the conditioned heart rate change, although it reduced the auditory responses; (2) 4 mm 5-HT augmented the subthreshold BF shifts, whereas 20 mm 5-HT did not; (3) 20 mm 5-HT reduced the long-term BF shifts and changed them into short-term; (4) alpha-methyl-5-HT increased the auditory responses and augmented the subthreshold BF shifts as well as the long-term BF shifts; (5) in contrast, ritanserin reduced the auditory responses and reversed the direction of the BF shifts. Our data indicate that the BF shift can be modulated by serotonergic neurons that augment or reduce the BF shift or even reverse the direction of the BF shift. Therefore, not only the cholinergic system, but also the serotonergic system, plays an important role in cortical plasticity according to behavioral demands.


Assuntos
Córtex Auditivo/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Plasticidade Neuronal/fisiologia , Serotonina/fisiologia , Estimulação Acústica/métodos , Animais , Córtex Auditivo/efeitos dos fármacos , Quirópteros , Condicionamento Psicológico/efeitos dos fármacos , Medo/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
15.
J Neurophysiol ; 94(2): 1199-211, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16061490

RESUMO

In big brown bats, tone-specific plastic changes [best frequency (BF) shifts] of cortical and collicular neurons can be evoked by auditory fear conditioning, repetitive acoustic stimuli or cortical electric stimulation. It has been shown that acetylcholine (ACh) plays an important role in evoking large long-term cortical BF shifts. However, the role of N-methyl-d-aspartate (NMDA) receptors in evoking BF shifts has not yet been studied. We found 1) NMDA applied to the auditory cortex (AC) or inferior colliculus (IC) augmented the auditory responses, as ACh did, whereas 2-amino-5-phosphovalerate (APV), an antagonist of NMDA receptors, reduced the auditory responses, as atropine did; 2) although any of these four drugs did not evoke BF shifts, they influenced the development of the long-term cortical and short-term collicular BF shifts elicited by conditioning; 3) like ACh, NMDA augmented the cortical and collicular BF shifts regardless of whether it was applied to the AC or IC; 4) endogenous ACh of the AC and IC is necessary to produce the long-term cortical and short-term collicular BF shifts; 5) blockade of collicular NMDA receptors by APV abolished the development of the collicular BF shift and made the cortical BF shift small and short-term; 6) blockade of cortical NMDA receptors by APV reduced the cortical and collicular BF shifts and made the cortical BF shift short-term; and 7) conditioning with NMDA + atropine applied to the AC evoked the small, short-term cortical BF shift, whereas conditioning with APV + ACh applied to the AC evoked the small, but long-term cortical BF shift.


Assuntos
Vias Auditivas/efeitos dos fármacos , Quirópteros/fisiologia , Agonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/farmacologia , Medo/fisiologia , N-Metilaspartato , Plasticidade Neuronal/efeitos dos fármacos , Acetilcolina/farmacologia , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Atropina/farmacologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Interações Medicamentosas , Estimulação Elétrica/efeitos adversos , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/fisiologia , N-Metilaspartato/agonistas , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/farmacologia , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos da radiação , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
16.
J Neurophysiol ; 90(3): 1904-9, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12966181

RESUMO

Reorganization of the frequency map in the central auditory system is based on shifts in the best frequencies (BFs; hereafter, BF shifts), together with the frequency-response curves, of auditory neurons. In the big brown bat, conditioning with acoustic stimulation followed by electric leg-stimulation causes BF shifts of collicular and cortical neurons. The collicular BF shift develops quickly and is short term, whereas the cortical BF shift develops slowly and is long term. The acetycholine level in the auditory cortex must be high during conditioning to develop these BF shifts. We studied the effect of atropine (an antagonist of muscarinic acetylcholine receptors) applied to the auditory cortex on the development of the long-term cortical BF shift in the awake bat caused by a 30-min conditioning session. We found 1) the cortical BF shift starts to develop approximately 15 min after the onset of the conditioning, gradually increases over 60 min, and reaches a plateau, 2) the cortical BF shift changes from short to long term approximately 45 min after the onset of the conditioning, 3) the cortical BF shift can plateau at different frequencies between the BF of a given neuron in the control condition and the frequency of the conditioning tone, 4) the maximum BF shift is determined approximately 70 min after the onset of the conditioning, and 5) acetylcholine plays an important role in the development of the cortical BF shift. Its role ends approximately 180 min after the onset of the conditioning.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Atropina/farmacologia , Córtex Auditivo/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Medo/efeitos dos fármacos , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/fisiologia , Quirópteros , Condicionamento Psicológico/fisiologia , Estimulação Elétrica/métodos , Medo/fisiologia
17.
Neuron ; 36(1): 9-18, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12367501

RESUMO

The descending (corticofugal) auditory system adjusts and improves auditory signal processing in the subcortical auditory nuclei. The auditory cortex and corticofugal system evoke small, short-term changes of the subcortical auditory nuclei in response to a sound repetitively delivered to an animal. These changes are specific to the parameters characterizing the sound. When the sound becomes significant to the animal through conditioning (associative learning), the changes are augmented and the cortical changes become long-term. There are two types of reorganizations: expanded reorganization resulting from centripetal shifts in tuning curves of neurons toward the values of the parameters characterizing a sound and compressed reorganization resulting from centrifugal shifts in tuning curves of neurons away from these values. The two types of reorganizations are based on a single mechanism consisting of two components: facilitation and inhibition.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Vias Eferentes/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Córtex Auditivo/citologia , Vias Auditivas/citologia , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Condicionamento Psicológico/fisiologia , Vias Eferentes/citologia , Humanos , Aprendizagem/fisiologia , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...