Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(25): 36849-36860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758436

RESUMO

A hydrothermal synthesis method was developed to produce high crystallinity ZSM-5 zeolite using coal gasification coarse slag (CGCS) as the raw material. Instead of the expensive NaOH(s.), Na2SiO3(s.) was utilized to activate, depolymerize, and recombine Si and Al elements in the CGCS. The mother liquor circulation technology was employed to recover and reuse raw materials and residual reagents (Na2SiO3(aq.) and TPABr), reducing waste emissions and enhancing resource utilization efficiency. The synthesized ZSM-5 had a specific surface area of 455.675 m2 g-1, pore volume of 0.284 cm3 g-1, and pore diameter of 2.496 nm. The influence of various factors on the morphology and crystallinity of ZSM-5 was investigated, resulting in the production of ZSM-5 with higher specific surface area and pore volume. Adsorption experiments showed that WU-ZSM-5 exhibited a removal efficiency of 85% for ammonia nitrogen (NH4+-N(aq.)), validating its effectiveness in coal chemical wastewater purification. The mother liquor recycling technology enabled zero-emission utilization of solid waste resources and improved the utilization rate of alkali and template to 90%. These results demonstrate the potential application of the developed method in the efficient treatment of coal chemical wastewater.


Assuntos
Carvão Mineral , Águas Residuárias , Zeolitas , Zeolitas/química , Águas Residuárias/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
2.
Anal Chim Acta ; 1288: 342156, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220288

RESUMO

BACKGROUND: Molecular shape selectivity, based on the size and shape parameters of the molecule, such as length and planarity, is a separation process that can be used for compounds with restricted shapes, such as isomers. The separation of geometric isomers is challenging because these compounds have similar physicochemical properties but differ slightly in molecular shape. The ability to separate and quantify these isomers is important in high performance liquid chromatography (HPLC), which is one of the most widely used techniques in separation science today, because the shape of the molecule has a strong influence on biological processes. RESULTS: We prepared symmetrical discoidal dendrimeric organomolecule gelators (GSDM) and o-phenylenediamine-derived low-molecular-weight dendrimeric organomolecule gelators (G1) and bonded them to silica surfaces. The dendritic organic compound-grafted silica (SiO2@GSDM and SiO2@G1) was used as HPLC stationary phases for the separation of shape-restricted isomers of polycyclic aromatic hydrocarbons (PAHs), carotenoids and tocopherols. The two phases exhibit a very high molecular shape selectivity compared to the commercially available alkyl phases. There are differences in molecular shape selectivity between the two stationary phases. Changes in the chemical structure of dendritic organic compounds can alter the orientation of the molecules, as well as changes in the molecular recognition ability. It was found that SiO2@GSDM has high molecular linear selectivity for PAHs at different temperatures, even at 50 °C. The planar selectivity of SiO2@GSDM was better for triphenylene and o-terphenyl benzenes compared to SiO2@G1. SIGNIFICANCE: This separation behavior may be attributed to the combined effect of weak interaction centers, which allowed the effective separation of bioactive and shape-restricted isomers through multiple interactions. Furthermore, SiO2@GSDM showed better separation of tocopherols and carotenoids, suggesting that the backbone and ordered structure of organic molecular gelators is an effective way to improve the shape selectivity of the molecules, whereas the molecular orientation of the functional groups influences the separation mechanism of the shape-restricted isomers.

3.
ACS Synth Biol ; 13(1): 269-281, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061052

RESUMO

CRISPR-Cas9 systems have been widely harnessed for diverse genome editing applications because of their ease of use and high efficiency. However, the large molecular sizes and strict PAM requirements of commonly used CRISPR-Cas9 systems restrict their broad applications in therapeutics. Here, we report the molecular basis and genome editing applications of a novel compact type II-A Eubacterium ventriosum CRISPR-Cas9 system (EvCas9) with 1107 residues and distinct 5'-NNGDGN-3' (where D represents A, T, or G) PAM specificity. We determine the cryo-EM structure of EvCas9 in a complex with an sgRNA and a target DNA, revealing the detailed PAM recognition and sgRNA and target DNA association mechanisms. Additionally, we demonstrate the robust genome editing capacity of EvCas9 in bacteria and human cells with superior fidelity compared to SaCas9 and SpCas9, and we engineer it to be efficient base editors by fusing a cytidine or adenosine deaminase. Collectively, our results facilitate further understanding of CRISPR-Cas9 working mechanisms and expand the compact CRISPR-Cas9 toolbox.


Assuntos
Sistemas CRISPR-Cas , Eubacterium , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , DNA/genética
4.
Int J Biol Macromol ; 258(Pt 1): 128772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103670

RESUMO

This study prepared type 3, type 4, and type 5 quinoa resistant starch (QRS3, QRS4, and QRS5) from quinoa starch (QS), compared their structural and physicochemical properties and evaluated their noodle-making potential. The results showed that the molecular weight of QRS3 decreased, the number of short-chain molecules increased, and its crystal type changed to B-type after gelatinization, enzymatic hydrolysis, and retrogradation. QRS4 is a phosphorylated cross-linked starch, with a surface morphology, particle size range, and crystal type similar to QS, but displaying modified thermodynamic properties. QRS5 is a complex of amylose and palmitic acid. It displays typical V-type crystals, mainly composed of long chain molecules and primarily exhibits a block morphology. The noodles prepared by replacing 20 % wheat flour with QS, QRS3 and QRS5 have higher hardness and are suitable for people who like elasticity and chewiness. QRS4 noodles are softer and suitable for people like elderly and infants who prefer soft foods. In conclusion, significant differences were evident between the fine structures, crystal types, physicochemical properties and potential applications of QS and the three QRSs. The results may expand the application of QS and QRS in the food and pharmaceutical industries.


Assuntos
Chenopodium quinoa , Amido , Humanos , Idoso , Amido/química , Amido Resistente , Chenopodium quinoa/química , Farinha , Triticum , Amilose/química
5.
Environ Monit Assess ; 195(9): 1023, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548802

RESUMO

Economic development has rapidly progressed since the implementation of reform and opening up policies, posing significant challenges to sustainable development, especially to vegetation, which plays a crucial role in maintaining ecosystem service functions and promoting green low-carbon transformations. In this study, we estimated the fractional vegetation cover (FVC) in Shandong Province from 2000 to 2020 using the Google Earth Engine (GEE) platform. The spatial and temporal changes in FVC were analyzed using gravity center migration analysis, trend analysis, and geographic detector, and the vegetation changes of different land use types were analyzed to reveal the internal driving mechanism of FVC changes. Our results indicate that vegetation cover in Shandong Province was in good condition during the period 2000 to 2020. The high vegetation cover classes dominated, and overall changes were relatively small, with the center of gravity of vegetation cover generally shifting towards the southwest. Land use type, soil type, population density, and GDP factors had the most significant impact on vegetation cover change in Shandong Province. The interaction of these factors enhanced the effect on vegetation cover change, with land use type and soil type having the highest degree of influence. The observational results of this study can provide data support for the policy makers to formulate new ecological restoration strategies, and the findings would help facilitate the sustainability management of regional ecosystem and natural resource planning.


Assuntos
Ecossistema , Monitoramento Ambiental , China , Conservação dos Recursos Naturais , Solo , Desenvolvimento Sustentável
6.
RSC Adv ; 13(17): 11472-11479, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063739

RESUMO

Antibiotic-like organic pollutants are harmful to aquatic ecosystems and seriously disrupt the ecological balance. Herein, we propose a simple and versatile method to prepare cobalt-manganese oxides with high specific surface area and abundant oxygen vacancies using low-temperature reduction crystallization, which greatly facilitates the adsorption and electron transfer between the catalyst, PDS, and TC, thus accelerating the degradation of tetracycline (TC). Among them, the degradation efficiency of TC in the CoMn2O4(C)/PDS system was 99.8% in 60 min and the degradation rate remained above 90% after four cycles. The possible degradation mechanism is also discussed, where Co is the main metal active center of the catalyst and Mn plays an auxiliary catalytic role to promote the generation of reactive radicals in PDS through redox interactions between Co and Mn, where SO4 -˙ is the main active species for TC degradation. Finally, the possible degradation pathways of TC are proposed and the toxicity of the intermediates is evaluated. Findings from this work will shed light on the rational design of bimetallic oxide catalysts.

7.
Anal Bioanal Chem ; 414(29-30): 8263-8276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201045

RESUMO

Dendritic organic molecular gels are a promising class of three-dimensional network compounds. Here, we have synthesized a new type of dendritic organic molecular gel stationary phase (SiO2-G3) by using benzyl alcohol as raw material and dimethyl 5-hydroxyisophthalate as growth unit to synthesize a third-generation organic molecular gel G3, which grafted onto the silica surface by cyanogen chloride (CC). The developed stationary phase not only exhibits high molecular shape selectivity but also has a RPLC/HILIC/IEC mixed-mode characteristic for HPLC due to the ordered structure, the multiple strong π-π stacking interactions and the introduction of a hydrophilic triazine fraction during the grafting process. Compared with a commercial C18 column, the developed column exhibited flexible selectivity, enhanced separation performance and excellent separation of monosubstituted benzene, polycyclic aromatic hydrocarbons (PAHs), positional isomers, nucleosides and nucleobases, benzoic acid and aniline compounds. In addition, the new column provided baseline separation of polycyclic aromatic hydrocarbon contaminants in Yellow River water, verifying its potential for application in the analysis of real samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida de Alta Pressão/métodos , Géis , Hidrocarbonetos Policíclicos Aromáticos/análise
8.
J Colloid Interface Sci ; 628(Pt A): 448-462, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932681

RESUMO

Peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) are effective methods for the degradation of highly toxic and refractory nitrogen-containing heteroatomic pollutants such as benzotriazole (BTA). The construction of catalytic materials with multiple active centers is the key to generating abundant reactive oxygen species (ROS) and achieving high mineralization efficiency in PMS-AOPs. Herein, carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets catalyst (CoCuNS@CNTs) was obtained by pyrolysis of two-dimensional (2D) MOF precursor. The degradation rate constant of BTA in CoCuNS@CNTs/PMS system was 4 times higher than that of metal oxide nanosheets catalyst without CNTs, while exhibiting high cycling stability and mineralization efficiency. Serial characterizations demonstrated that CoCu nanosheets was formed by CNTs-induced the directional assembly of metal oxide nanoparticles, which had high graphitization and abundant oxygen vacancies and could greatly facilitated the adsorption and electron transfer between the catalyst, PMS and BTA. Moreover, the doping of Cu species significantly improved PMS utilization and accelerated the Co(III)/Co(II) redox cycle. Both radicals (SO4-• and •OH) and non-radicals (1O2) played a role in CuCoNS@CNTs/PMS system and the contributions of ROS were 72.2%, 11.1% and 16.7%, respectively. Meanwhile, the concentration of key ROS (SO4-•) production increased from 4.76 µM to 8.56 µM compared with cobalt oxide nanosheets (CoNS). Three degradation pathways of BTA were proposed: benzene ring opening, benzene ring hydroxylation and triazole ring dimerization. Finally, the toxicity changes during the degradation process were measured and the toxicity of eleven intermediates was evaluated. This study may provide new insights into the degradation of persistent organic pollutants.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Benzeno , Cobalto , Cobre , Nanotubos de Carbono/toxicidade , Nitrogênio , Óxidos , Oxigênio , Peróxidos , Poluentes Orgânicos Persistentes , Espécies Reativas de Oxigênio , Triazóis/toxicidade
9.
Chem Commun (Camb) ; 58(49): 6954-6957, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35642611

RESUMO

Inspired by the working principle of natural spiderweb and long-persistence phosphors, we have synthesized a spiderweb-like nanocomposite in which CoS quantum dots are confined in N-doped carbon frameworks/carbon nanotubes (CNTs). The intimate combination of three-dimensional conductive networks of CoS/CNTs with abundant active sites allows effective capture of sulfate radicals via both physical confinement and chemical bonding and accelerates the redox kinetics significantly. Furthermore, in virtue of the light storing and luminescence behaviors of long-persistence phosphors, the all-weather CoS/CNTs produced can realize an optimum degradation efficiency of 64% under dark conditions. Overall, this work reveals a significant step forward for building a desirable all-weather catalyst with abundant active sites for potential use in degradation under dark conditions.

10.
J Colloid Interface Sci ; 622: 577-590, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526415

RESUMO

Environmental H2O is an influential factor in the low-temperature catalytic oxidation of volatile organic compounds (VOCs), and it significantly impacts the reaction process and mechanism. Here, a series of rod-like Cu-Mn oxides were synthesised by pyrolysing Cu/Mn-BTC for acetone oxidation. The results confirm that the formation of multiphase interfaces have more excellent catalytic performance compared to single-phase catalysis. This phenomenon can be attributed to the formation of multiphase interfaces, which resulted in the synthesized catalysts with more active oxygen species and defective sites. The CuMn2Ox catalyst exhibited superior catalytic performance (T90 = 150 °C), high water resistance and long-term stability. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy and thermal desorption-gas chromatography-mass spectrometry results indicated that the degradation pathway of acetone was as follows: acetone ((CH3)2CO*) â†’ enolate complexes ((CH2) = C(CH3) O*) â†’ acetaldehyde ((CH3CHO*) â†’ acetate (CH3COO*) â†’ formate (HCOO*) â†’ CO2 and H2O. At a low-temperature, water vapour dissociated a large number of activated hydroxyl groups on the multiphase interface, which promoted the dissociation of enolate complexes and acetaldehyde species. This composite oxide is a promising catalyst for removing oxygenated VOCs at high humidity.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Acetaldeído , Acetona , Catálise , Oxirredução , Óxidos/química , Compostos Orgânicos Voláteis/química
11.
Natl Sci Rev ; 8(3): nwaa195, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34691593

RESUMO

Identification of the real catalytic site in CO2 reduction reaction (CO2RR) is critical for the rational design of catalysts and the understanding of reactive mechanisms. In this study, the catalytic activity of pyridine-containing materials was for the first time structurally demonstrated in CO2RR by crystalline supramolecular coordination compounds model system. The system consists of three stable supramolecular coordination compounds (Ni-TPYP, Ni-TPYP-1 and Ni-TPP) with different numbers (4, 2 and 0) of active pyridine groups (i.e. uncoordinated pyridine nitrogen atoms). The electrocatalytic test results show that with the decrease of the number of active pyridine groups, the CO2RR performance is gradually reduced, mainly showing the reduction of highest FECO (99.8%, 83.7% and 25.6%, respectively). The crystallographic, experimental and theoretical evidences prove that the CO2RR activity is more likely derived from uncoordinated pyridine nitrogen than the electrocatalytic inert metal nickel in porphyrin center. This work serves as an important case study for the identification of electrocatalytic activity of pyridine-containing materials in CO2RR by simple supramolecular model system.

12.
JACS Au ; 1(2): 212-220, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467285

RESUMO

The design of a powerful heterojunction structure and the study of the interfacial charge migration pathway at the atomic level are essential to mitigate the photocorrosion and recombination of electron-hole pairs of CdS in photocatalytic hydrogen evolution (PHE). A temperature-induced self-assembly strategy has been proposed for the syntheses of Prussian blue analogue (PBA)/CdS nanocomposites with beaded structure. The specially designed structure had evenly exposed CdS which can efficiently harvest visible light and inhibit photocorrosion; meanwhile, PBA with a large cavity provided channels for mass transfer and photocatalytic reaction centers. Remarkably, PB-Co/CdS-LT-3 exhibits a PHE rate of 57 228 µmol h-1 g-1, far exceeding that of CdS or PB-Co and comparable to those of most reported crystalline porous material-based photocatalysts. The high performances are associated with efficient charge migration from CdS to PB-Co through CN-Cd electron bridges, as revealed by the DFT calculations. This work sheds light on the exploration of heterostructure materials in efficient PHE.

13.
Nat Commun ; 12(1): 4134, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226547

RESUMO

Junin virus (JUNV) causes Argentine hemorrhagic fever, a debilitating human disease of high mortality rates and a great risk to public health worldwide. Studying the L protein that replicates and transcribes the genome of JUNV, and its regulator Z protein should provide critical clues to identify therapeutic targets for disrupting the life cycle of JUNV. Here we report the 3.54 Å cryo-EM structure of the JUNV L protein complexed with regulator Z protein. JUNV L structure reveals a conserved architecture containing signature motifs found in other L proteins. Structural analysis shows that L protein is regulated by binding of Z protein at the RNA product exit site. Based on these findings, we propose a model for the role of Z protein as a switch to turn on/off the viral RNA synthesis via its interaction with L protein. Our work unveils the mechanism of JUNV transcription, replication and regulation, which provides a framework for the rational design of antivirals for combating viral infections.


Assuntos
Arenavirus/enzimologia , Arenavirus/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno , Humanos , Vírus Junin/enzimologia , Vírus Junin/genética , Modelos Moleculares , Conformação Proteica , RNA Viral
14.
J Hazard Mater ; 417: 126052, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000702

RESUMO

The development of synthetic methods to obtain high value-added mesoporous Al-MCM-41 from a low-cost silicon-aluminum source with low toxicity is an active research topic in solid waste resource utilization. In particular, the controlled synthesis of MCM-41 with a two-level pore distribution is a challenging task. In this work, the synthesis of unimodal and bimodal mesoporous Al-MCM-41s was achieved using acids with different degrees of ionization from coal gasification fine residue (CGFR) as bulk solid waste generated by the coal gasification process. We determined that the degree of acid ionization affected the self-assembly of inorganic/organic species as well as condensation processes, resulting in some changes of the hexagonal mesoscopic structure. The unimodal mesoporous Al-MCM-41 with acetic acid HAc and bimodal mesoporous Al-MCM-41s with an inorganic acid environment (HCl, HNO3 or H2SO4) could be effectively prepared in a controllable manner by the silicon and aluminum source obtained at alkali dissolution time 6 h and crystallization conditions at pH 10.5 and 383 K in 72 h. Moreover, the synthesis of Al-MCM-41-HAc with different SiO2/Al2O3 molar ratios (18-89) could also be realized by different alkali dissolution times. And alkali dissolution time (2-24 h) and the crystallization conditions (pH 4.5-11.5, temperatures 373-393 K, and time 48-96 h) also affected the formation of unimodal and bimodal mesoporous Al-MCM-41-HAc. In addition, the maximum adsorption amount onto bimodal mesoporous Al-MCM-41-H2SO4 (476.19 mg g-1 at 308 K) was larger than that onto unimodal mesoporous Al-MCM-41-HAc (243.90 mg g-1 at 303 K). The mesoporous Al-MCM-41s showed good stability.

15.
Research (Wash D C) ; 2021: 6742715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860233

RESUMO

Amorphous pseudocapacitive nanomaterials are highly desired in energy storage applications for their disordered crystal structures, fast electrochemical dynamics, and outstanding cyclic stability, yet hardly achievable using the state-of-the-art synthetic strategies. Herein, for the first time, high capacitive fiber electrodes embedded with nanosized amorphous molybdenum trioxide (A-MoO3-x) featuring an average particle diameter of ~20 nm and rich oxygen vacancies are obtained via a top-down method using α-MoO3 bulk belts as the precursors. The Jahn-Teller distortion in MoO6 octahedra due to the doubly degenerate ground state of Mo5+, which can be continuously strengthened by oxygen vacancies, triggers the phase transformation of α-MoO3 bulk belts (up to 30 µm long and 500 nm wide). The optimized fibrous electrode exhibits among the highest volumetric performance with a specific capacitance (C V ) of 921.5 F cm-3 under 0.3 A cm-3, endowing the fiber-based weaveable supercapacitor superior C V and E V (energy density) of 107.0 F cm-3 and 9.5 mWh cm-3, respectively, together with excellent cyclic stability, mechanical robustness, and rate capability. This work demonstrates a promising strategy for synthesizing nanosized amorphous materials in a scalable, cost-effective, and controllable manner.

16.
Environ Sci Technol ; 55(8): 5347-5356, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33724005

RESUMO

Purposively designing environmental advanced materials and elucidating the underlying reactivity mechanism at the atomic level allows for the further optimization of the removal performance for contaminants. Herein, using well facet-controlled I-Cu2WS4 single crystals as a model transition metal chalcogenide sorbent, we investigated the adsorption performance of the exposed facets toward gaseous elemental mercury (Hg0). We discovered that the decahedron exhibited not only facet-dependent adsorption properties for Hg0 but also recrystallization along the preferential [001] growth direction from a metastable state to the steady state. Besides, the metastable crystals with a predominant exposure of {101} facets dominated the promising adsorption efficiency (about 99% at 75 °C) while the saturated adsorption capacity was evaluated to be 2.35 mg·g-1. Subsequently, comprehensive characterizations and X-ray adsorption fine structure (XAFS), accompanied by density functional theory (DFT) calculations, revealed that it might be owing to the coordinatively unsaturated local environment of W atoms with S defects and the surface relative stability of different facets, which could be affected by the change in surface atom configuration. Hence, the new insight into the facet-dependent adsorption property of transition metal chalcogenide for Hg0 may have important implications, and the atomic-level study directly provides instructions for development and design of highly efficient functional materials.


Assuntos
Mercúrio , Adsorção
18.
Environ Sci Pollut Res Int ; 28(17): 21159-21173, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33405145

RESUMO

Minimization and stabilization of arsenic-containing smelting wastewater and residue is of crucial issue to resolve the arsenic contamination. Calcium arsenate is a typical precipitate produced from disposal of smelting acid wastewater. However, it suffers from poor stability and large quantity in the aqueous environment. Copper slags, as for rich-iron species materials, are disposed of in landfills or open-air tailing ponds, which are another waste material that have not been effectively utilized for reuse application. In this study, strategy for sequence of phase-controlled and thermal-doped copper slag technique was used as the efficient means of minimization and stabilization of arsenic-bearing resides. Detailed results were showed that stepwise phase precipitation significantly reduced the formation of hazardous solid waste; the total solid waste was reduced 47.0 wt% because the gypsum was separated from arsenic calcium residues through two-step methods. Subsequently, solid waste stabilization was achieved by using thermal-doped slag, and the high yield of magnetite (75.6 wt%) and fayalite (22.7 wt%) was produced from copper slags. It was proved that these iron-rich species displayed the remarkable performance to stabilize arsenic due to the formation of Fe-As-Ca-O complex; compared with the raw solid waste, the arsenic leachability was decreased from 280.75 to 1.05 mg/L via copper slag stabilization process. The immobilized arsenic content was 25.0 wt%. Overall, the proposed strategy for stepwise phase-controlled and thermal-doped copper slags was a potentially effective strategy for reducing emissions and pollution of arsenic-containing wastewater and residue.


Assuntos
Arsênio , Arsênio/análise , Cobre , Resíduos Perigosos , Resíduos Sólidos , Águas Residuárias
19.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932754

RESUMO

In this study, a Rh(I)/Ru(III) catalyst with a bimetallic space structure was designed and synthesized. The interaction between the metals of the bimetallic catalyst and the structure of the bridged dimer can effectively reduce the steric hindrance effect and help speed up the reaction rate while ensuring the stability of the catalyst. X-ray photoelectron spectroscopy (XPS) results show that rhodium accepts electrons from chlorine, thereby increasing the electron-rich nature of rhodium and improving the catalytic activity. This promotes the nucleophilic reaction of the catalyst with methyl iodide and reduces the reaction energy barrier. The methanol carbonylation performance of the Rh/Ru catalyst was evaluated, and the results show that the conversion rate of methyl acetate and the yield of acetic acid are 96.0% under certain conditions. Furthermore, during the catalysis, no precipitate is formed and the amount of water is greatly reduced. It can be seen that the catalyst has good stability and activity.

20.
Nat Commun ; 11(1): 4245, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843629

RESUMO

Diheme-containing succinate:menaquinone oxidoreductases (Sdh) are widespread in Gram-positive bacteria but little is known about the catalytic mechanisms they employ for succinate oxidation by menaquinone. Here, we present the 2.8 Å cryo-electron microscopy structure of a Mycobacterium smegmatis Sdh, which forms a trimer. We identified the membrane-anchored SdhF as a subunit of the complex. The 3 kDa SdhF forms a single transmembrane helix and this helix plays a role in blocking the canonically proximal quinone-binding site. We also identified two distal quinone-binding sites with bound quinones. One distal binding site is formed by neighboring subunits of the complex. Our structure further reveals the electron/proton transfer pathway for succinate oxidation by menaquinone. Moreover, this study provides further structural insights into the physiological significance of a trimeric respiratory complex II. The structure of the menaquinone binding site could provide a framework for the development of Sdh-selective anti-mycobacterial drugs.


Assuntos
Proteínas de Bactérias/química , Mycobacterium smegmatis/enzimologia , Succinato Desidrogenase/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Microscopia Crioeletrônica , Transporte de Elétrons , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mycobacterium smegmatis/química , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Succinato Desidrogenase/metabolismo , Ácido Succínico/metabolismo , Vitamina K 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...