Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 439(1): 114072, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719175

RESUMO

HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.


Assuntos
Cardiomegalia , Regulação para Baixo , Dinaminas , Proteínas Hedgehog , Espécies Reativas de Oxigênio , Dinaminas/metabolismo , Dinaminas/genética , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Regulação para Baixo/genética , Transdução de Sinais , Camundongos , Ratos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética
2.
Mol Neurobiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775879

RESUMO

Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.

3.
J Cell Physiol ; 238(10): 2512-2527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566721

RESUMO

The mechanism underlying long-term cognitive impairment caused by neonatal hypoxic-ischemic brain injury (HIBI) remains unclear. Autophagy is a closely related mechanism and may play a role in this process. We aimed to investigate the role of lysosomal transmembrane protein 175 (TMEM175) in the autophagy-lysosome pathway in neonatal rats with HIBI. A neonatal rat model of HIBI was established, hypoxia was induced, followed by left common carotid artery ligation. Expression levels of TMEM175 and the corresponding proteins involved in autophagy flux and the endolysosomal system fusion process were measured. Rats were administered TMEM175 plasmid via intracerebroventricular injection to induce overexpression. Brain damage and cognitive function were then assessed. TMEM175 was downregulated in the hippocampal tissue, and the autophagy-lysosome pathway was impaired following HIBI in neonatal rats. Overexpression of TMEM175 significantly mitigated neuronal injury and improved long-term cognitive and memory function in neonatal rats with HIBI. We found that improvement in the autophagy-lysosome pathway and endolysosomal system homeostasis, which are TMEM175 related, occurred via regulation of lysosomal membrane dynamic fusion. TMEM175 plays a critical role in maintaining the autophagy-lysosome pathway and endolysosomal homeostasis, contributing to the amelioration of neuronal injury and impaired long-term cognitive function following neonatal HIBI.

4.
Front Genet ; 14: 1174314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388934

RESUMO

Structural rearrangements of chromosome 4p gives rise to a group of rare genomic disorders that mainly result in two different clinical entities: Wolf-Hirschhorn syndrome (WHS) and partial 4p trisomy. The severity of the phenotype depends on the size of the deletion or locus duplication. Here, we present two unrelated individuals with a copy number variation of chromosome 4p. Inverted duplication deletions (inv dup-del) in 4p are particularly rare. Case 1 describes a 15-year-old girl with a 1.055 Mb deletion of terminal 4p, distal to the recognized critical region of WHS, and a large duplication of 9.6 Mb in size from 4p16.3 to p16.1. She had postnatal development delay, intellectual disability (especially pronounced in speech), seizure/electroencephalogram anomalies, and facial dysmorphic features. This unusual chromosomal imbalance resulted in the WHS phenotype rather than the 4p trisomy syndrome phenotype. Case 2 describes a 21-month-old boy with a 1.386 Mb terminal 4p deletion who presented with slight developmental delay, borderline intellectual disability, and seizures. Combined with previous reported cases of 4 pter del-dup or pure 4p terminal deletions, our observations suggest that terminal chromosome 4p deletion is more pathogenic than the concomitant partial 4p duplication, and some regions of the 4p terminal may have regulatory effects on the remaining region of 4p. About nine cases have been reported thus far to date, and our study delineates further genotype-phenotype correlations about terminal 4p duplication-deletions for predicting disease prognosis and patient counseling.

5.
CNS Neurosci Ther ; 29(10): 3053-3061, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157892

RESUMO

AIMS: The study aimed to explore whether high-frequency oscillations (HFOs) can predict seizure risk and atypical manifestations of benign epilepsy of childhood with centrotemporal spikes (BECTS). METHODS: We recruited 60 patients and divided them into three groups: (1) seizure-free BECTS, (2) active typical BECTS, and (3) active atypical forms of BECTS. Electroencephalogram was used to record the number, location, average amplitude, and duration of spikes, and spike ripples were analyzed using time-frequency technology. Multivariable logistic regression analysis was used to investigate independent predictive factors for prognosis. RESULTS: The number of sleep spike ripples, rather than spikes, was an independent risk factor for the active period of the disease (odds ratio [OR] = 4.714, p = 0.003) and atypical forms of BECTS (OR = 1.455, p = 0.049); the optimal thresholds for the spike ripple rate were >0 (area under the curve [AUC] = 0.885, sensitivity = 96.15%, specificity = 73.33%) and >0.6/min (AUC = 0.936, sensitivity = 84.21%, specificity = 96.15%), respectively. Furthermore, in typical BECTS, the spike ripple rate showed significant negative correlations with time since the last seizure (ρ = -0.409, p = 0.009) and age (ρ = -0.379, p = 0.016), while the spike rate did not. CONCLUSION: Spike ripple was a marker for distinguishing typical and atypical forms of BECTS and reflected the risk of seizure recurrence better than the spike alone. The present findings might assist clinicians in BECTS treatment.


Assuntos
Epilepsia Rolândica , Humanos , Epilepsia Rolândica/diagnóstico , Couro Cabeludo , Convulsões , Prognóstico , Eletroencefalografia
6.
Front Neurol ; 13: 883078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651335

RESUMO

Objective: To explore the structural brain abnormality and its relationship with neuropsychological disorders and electroclinical characteristics in juvenile myoclonic epilepsy (JME) patients. Methods: Sixty-seven patients diagnosed with JME and 56 healthy controls were enrolled. All subjects underwent MRI using T1-weighted 3D brain structural images with 1 mm thickness. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) analyses were performed. They also underwent a series of neuropsychological tests to assess cognitive function. The correlation analyses were conducted between structural changes, neuropsychological outcomes, and electroclinical features. Results: The gray matter concentration (GMC) was decreased in the bilateral pre-central and post-central gyrus, right anterior cingulate gyrus, left posterior orbital region, bilateral occipital regions, bilateral hippocampus and bilateral caudate nucleus in the JME groups (corrected P < 0.05). The evaluation of gray matter volume (GMV) showed significant decrease respectively in bilateral pre-central and post-central gyrus, left paracentral lobule, left orbital gyrus, left amygdala, left basal ganglia and left thalamus of JME patients (P < 0.05). The cortex thicknesses of the right inferior temporal gyrus, right insular gyrus, and right cingulate gyrus had negative correlations with the disease duration significantly. At the same time, the whole-brain white matter volume was positively associated with the course of the disease (P < 0.05). Patients with persistent abnormal EEG discharges had significantly less whole-brain gray matter volume than JME patients with normal EEG (P = 0.03). Correlation analyses and linear regression analyses showed that, in addition to the gray matter volumes of frontal and parietal lobe, the temporal lobe, as well as the basal ganglia and thalamus, were also significantly correlated with neuropsychological tests' results (P < 0.05). Conclusion: The JME patients showed subtle structural abnormalities in multiple brain regions that were not only limited to the frontal lobe but also included the thalamus, basal ganglia, parietal lobe, temporal lobe and some occipital cortex, with significant involvement of the primary somatosensory cortex and primary motor cortex. And we significantly demonstrated a correlation between structural abnormalities and cognitive impairment. In addition, the course of disease and abnormal discharges had a specific negative correlation with the structural changes.

7.
Nanomaterials (Basel) ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019069

RESUMO

Unlike Co clusters, isolated Co atoms have been shown to be selective for catalytic dehydrogenation of ethane to ethylene; however, preparation of isolated Co sites requires special preparation procedures. Here, we demonstrate that Atomic Layer Deposition (ALD) of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)cobalt(III) (Co(TMHD)3) on silica and other supports is effective in producing these isolated species. Silica-supported catalysts prepared with one ALD cycle showed ethylene selectivities greater than 96% at 923 K and were stable when CO2 was co-fed with the ethane. Co catalysts prepared by impregnation formed clusters that were significantly less active, selective, and stable. Rates and selectivities also decreased for catalysts with multiple ALD cycles. Isolated Co catalysts prepared on Al2O3 and MgAl2O4 showed reasonable selectivity for ethane dehydrogenation but were not as effective as their silica counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...