Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Gastroenterol ; 56(7): 791-805, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33941035

RESUMO

Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.


Assuntos
Colite , Mucosa Intestinal , Humanos , Organoides , Fator Trefoil-2 , Cicatrização
2.
Nat Commun ; 10(1): 4408, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562318

RESUMO

Intestinal epithelial cells (IEC) have important functions in nutrient absorption, barrier integrity, regeneration, pathogen-sensing, and mucus secretion. Goblet cells are a specialized cell type of IEC that secrete Trefoil factor 3 (TFF3) to regulate mucus viscosity and wound healing, but whether TFF3-responsiveness requires a receptor is unclear. Here, we show that leucine rich repeat receptor and nogo-interacting protein 2 (LINGO2) is essential for TFF3-mediated functions. LINGO2 immunoprecipitates with TFF3, co-localizes with TFF3 on the cell membrane of IEC, and allows TFF3 to block apoptosis. We further show that TFF3-LINGO2 interactions disrupt EGFR-LINGO2 complexes resulting in enhanced EGFR signaling. Excessive basal EGFR activation in Lingo2 deficient mice increases disease severity during colitis and augments immunity against helminth infection. Conversely, TFF3 deficiency reduces helminth immunity. Thus, TFF3-LINGO2 interactions de-repress inhibitory LINGO2-EGFR complexes, allowing TFF3 to drive wound healing and immunity.


Assuntos
Colite/imunologia , Receptores ErbB/imunologia , Helmintíase/imunologia , Mucosa Intestinal/imunologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/imunologia , Fator Trefoil-3/imunologia , Animais , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Células Caliciformes/parasitologia , Células HEK293 , Helmintíase/metabolismo , Helmintíase/parasitologia , Helmintos/imunologia , Helmintos/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organofosfonatos , Fator Trefoil-3/genética , Fator Trefoil-3/metabolismo , Células U937
3.
J Immunol ; 203(2): 511-519, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175162

RESUMO

Whether conventional dendritic cells (cDC) acquire subset identity under direction of Wnt family glycoproteins is unknown. We demonstrate that Wnt4, a ß-catenin-independent Wnt ligand, is produced by both hematopoietic and nonhematopoietic cells and is both necessary and sufficient for preconventional DC1/cDC1 maintenance. Whereas bone marrow cDC precursors undergo phosphoJNK/c-Jun activation upon Wnt4 treatment, loss of cDC Wnt4 in CD11cCreWnt4flox/flox mice impaired differentiation of CD24+, Clec9A+, CD103+ cDC1 compared with CD11cCre controls. Conversely, single-cell RNA sequencing analysis of bone marrow revealed a 2-fold increase in cDC2 gene signature genes, and flow cytometry demonstrated increased numbers of SIRP-α+ cDC2 amid lack of Wnt4. Increased cDC2 numbers due to CD11c-restricted Wnt4 deficiency increased IL-5 production, group 2 innate lymphoid cell expansion, and host resistance to the hookworm parasite Nippostrongylus brasiliensis Collectively, these data uncover a novel and unexpected role for Wnt4 in cDC subset differentiation and type 2 immunity.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , Proteína Wnt4/imunologia , Animais , Antígenos CD/imunologia , Antígeno CD11c/imunologia , Antígeno CD24/imunologia , Diferenciação Celular/imunologia , Citometria de Fluxo/métodos , Cadeias alfa de Integrinas/imunologia , Linfócitos/imunologia , Camundongos , Transdução de Sinais/imunologia , beta Catenina/imunologia
4.
Proc Natl Acad Sci U S A ; 116(20): 9941-9946, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028139

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP-1) is a multidomain multifunctional nuclear enzyme involved in the regulation of the chromatin structure and transcription. PARP-1 consists of three functional domains: the N-terminal DNA-binding domain (DBD) containing three zinc fingers, the automodification domain (A), and the C-terminal domain, which includes the protein interacting WGR domain (W) and the catalytic (Cat) subdomain responsible for the poly(ADP ribosyl)ating reaction. The mechanisms coordinating the functions of these domains and determining the positioning of PARP-1 in chromatin remain unknown. Using multiple deletional isoforms of PARP-1, lacking one or another of its three domains, as well as consisting of only one of those domains, we demonstrate that different functions of PARP-1 are coordinated by interactions among these domains and their targets. Interaction between the DBD and damaged DNA leads to a short-term binding and activation of PARP-1. This "hit and run" activation of PARP-1 initiates the DNA repair pathway at a specific point. The long-term chromatin loosening required to sustain transcription takes place when the C-terminal domain of PARP-1 binds to chromatin by interacting with histone H4 in the nucleosome. This long-term activation of PARP-1 results in a continuous accumulation of pADPr, which maintains chromatin in the loosened state around a certain locus so that the transcription machinery has continuous access to DNA. Cooperation between the DBD and C-terminal domain occurs in response to heat shock (HS), allowing PARP-1 to scan chromatin for specific binding sites.


Assuntos
Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Cromatina/metabolismo , Drosophila , Ativação Enzimática , Histonas/metabolismo , Domínios Proteicos , Ativação Transcricional
5.
Methods Mol Biol ; 1608: 201-210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695512

RESUMO

The RNA-binding proteins (RBPs) play a pivotal role in controlling gene expression through posttranscriptional processes. As the trans-acting factors, RBPs interact with the cis-regulatory elements located within mRNAs to regulate mRNA translational efficiency. Adding a new-layer regulation, recent studies suggest that poly(ADP-ribosyl)ation of the RNA-binding proteins often inhibit the RNA-binding ability of RBPs, thus regulating RBP-dependent mRNA metabolism including translational control. Here, we describe a biotin-based UV cross-linking method to determine if excessive accumulation of pADPr in the cell disrupts the interaction between RBPs and their target mRNAs. In addition, we illustrate the protocol of using the luciferase reporter assay to determine the effect of poly(ADP-ribosyl)ation on mRNA translation.


Assuntos
Bioensaio/métodos , Biotina/metabolismo , Luciferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Raios Ultravioleta , Animais , Humanos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
6.
Methods Mol Biol ; 1608: 337-342, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695520

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme involved in purine nucleotide biosynthesis. It is responsible for catalyzing the oxidation of inosine monophosphate (IMP) into xanthosine monophosphate (XMP). Concurrently, the cofactor NAD+ is reduced to NADH. Poly(ADP-ribose) polymerase 1 (PARP-1) also utilizes NAD+ as a substrate to synthesize poly(ADP-ribose). It has been demonstrated that inhibition of PARP-1 activity can be an effective cancer therapeutic. However, most PARP-1 inhibitors, including olaparib, were developed as NAD+ analogs. Therefore, these inhibitors likely interfere with other NAD+-dependent pathways such as the one involved in de novo purine metabolism. In this chapter, we describe a method to quantitatively measure IMPDH activity by taking advantage of the autofluorescence of the product NADH. We use this method to analyze the effects of olaparib and non-NAD+-like PARP-1 inhibitor (5F02) on IMPDH activity. We found that olaparib, unlike 5F02, significantly inhibits IMPDH activity in a dose-dependent manner. Our results suggest that IMPDH inhibition is an off-target effect of olaparib treatment. The consequences of this effect should be addressed by future clinical studies.


Assuntos
Bioensaio/métodos , IMP Desidrogenase/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Humanos , Inosina Monofosfato/metabolismo , NAD/metabolismo , Oxirredução/efeitos dos fármacos , Ribonucleotídeos/metabolismo , Xantina
7.
EBioMedicine ; 13: 90-98, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27727003

RESUMO

The clinical potential of PARP-1 inhibitors has been recognized >10years ago, prompting intensive research on their pharmacological application in several branches of medicine, particularly in oncology. However, natural or acquired resistance of tumors to known PARP-1 inhibitors poses a serious problem for their clinical implementation. Present study aims to reignite clinical interest to PARP-1 inhibitors by introducing a new method of identifying highly potent inhibitors and presenting the largest known collection of structurally diverse inhibitors. The majority of PARP-1 inhibitors known to date have been developed as NAD competitors. NAD is utilized by many enzymes other than PARP-1, resulting in a trade-off trap between their specificity and efficacy. To circumvent this problem, we have developed a new strategy to blindly screen a small molecule library for PARP-1 inhibitors by targeting a highly specific rout of its activation. Based on this screen, we present a collection of PARP-1 inhibitors and provide their structural classification. In addition to compounds that show structural similarity to NAD or known PARP-1 inhibitors, the screen identified structurally new non-NAD-like inhibitors that block PARP-1 activity in cancer cells with greater efficacy and potency than classical PARP-1 inhibitors currently used in clinic. These non-NAD-like PARP-1 inhibitors are effective against several types of human cancer xenografts, including kidney, prostate, and breast tumors in vivo. Our pre-clinical testing of these inhibitors using laboratory animals has established a strong foundation for advancing the new inhibitors to clinical trials.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , NAD/metabolismo , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Immunol ; 197(6): 2382-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527593

RESUMO

Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerase-1/imunologia , Animais , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Imunidade Inata , NF-kappa B/imunologia , Regiões Promotoras Genéticas , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Ativação Transcricional
9.
Mol Cell Biol ; 36(19): 2476-86, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402862

RESUMO

Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) regulates the posttranscriptional fate of RNA during development. Drosophila hnRNP A1, Hrp38, is required for germ line stem cell maintenance and oocyte localization. The mRNA targets regulated by Hrp38 are mostly unknown. We identified 428 Hrp38-associated gene transcripts in the fly ovary, including mRNA of the translational repressor Nanos. We found that Hrp38 binds to the 3' untranslated region (UTR) of Nanos mRNA, which contains a translation control element. We have demonstrated that translation of the luciferase reporter bearing the Nanos 3' UTR is enhanced by dsRNA-mediated Hrp38 knockdown as well as by mutating potential Hrp38-binding sites. Our data show that poly(ADP-ribosyl)ation inhibits Hrp38 binding to the Nanos 3' UTR, increasing the translation in vivo and in vitro hrp38 and Parg null mutants showed an increased ectopic Nanos translation early in the embryo. We conclude that Hrp38 represses Nanos translation, whereas its poly(ADP-ribosyl)ation relieves the repression effect, allowing restricted Nanos expression in the posterior germ plasm during oogenesis and early embryogenesis.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ovário/crescimento & desenvolvimento , Poli A/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas , Animais , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas , Ovário/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Curr Mol Biol Rep ; 2(1): 10-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27042400

RESUMO

Restoring chromatin structure with high fidelity after mitosis is critical for cell survival. Transcriptional reactivation of genes is the first step toward establishing identity of the daughter cell. During mitosis, chromatin bookmarking factors associated with specific chromatin regions ensure the restoration of the original gene expression pattern in daughter cells. Recent findings have provided new insights into the mechanisms, regulation, and biological significance of gene bookmarking in eukaryotes. In this review, we discuss how epigenetic factors, such as Poly(ADP-ribose) Polymerase-1, establish epigenetic memory in mitotic chromatin.

11.
Int J Mol Sci ; 14(8): 16168-83, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23921685

RESUMO

Gene expression is intricately regulated at the post-transcriptional level by RNA-binding proteins (RBPs) via their interactions with pre-messenger RNA (pre-mRNA) and mRNA during development. However, very little is known about the mechanism regulating RBP activities in RNA metabolism. During the past few years, a large body of evidence has suggested that many RBPs, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), undergo post-translational modification through poly(ADP-ribosyl)ation to modulate RNA processing, including splicing, polyadenylation, translation, miRNA biogenesis and rRNA processing. Accordingly, RBP poly(ADP-ribosyl)ation has been shown to be involved in stress responses, stem cell differentiation and retinal morphogenesis. Here, we summarize recent advances in understanding the biological roles of RBP poly(ADP-ribosyl)ation, as controlled by Poly(ADP-ribose) Polymerases (PARPs) and Poly(ADP-ribose) Glycohydrolase (PARG). In addition, we discuss the potential of PARP and PARG inhibitors for the treatment of RBP-related human diseases, including cancer and neurodegenerative disorders.


Assuntos
Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteínas de Ligação a RNA/metabolismo , Reparo do DNA , Regulação da Expressão Gênica , Glicosídeo Hidrolases/antagonistas & inibidores , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
12.
J Cell Biol ; 201(5): 741-57, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23690177

RESUMO

A healthy diet improves adult stem cell function and delays diseases such as cancer, heart disease, and neurodegeneration. Defining molecular mechanisms by which nutrients dictate stem cell behavior is a key step toward understanding the role of diet in tissue homeostasis. In this paper, we elucidate the mechanism by which dietary cholesterol controls epithelial follicle stem cell (FSC) proliferation in the fly ovary. In nutrient-restricted flies, the transmembrane protein Boi sequesters Hedgehog (Hh) ligand at the surface of Hh-producing cells within the ovary, limiting FSC proliferation. Upon feeding, dietary cholesterol stimulates S6 kinase-mediated phosphorylation of the Boi cytoplasmic domain, triggering Hh release and FSC proliferation. This mechanism enables a rapid, tissue-specific response to nutritional changes, tailoring stem cell divisions and egg production to environmental conditions sufficient for progeny survival. If conserved in other systems, this mechanism will likely have important implications for studies on molecular control of stem cell function, in which the benefits of low calorie and low cholesterol diets are beginning to emerge.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colesterol na Dieta/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Folículo Ovariano/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Feminino , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
Gene ; 526(2): 187-94, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23711619

RESUMO

Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Olho/metabolismo , Glicosídeo Hidrolases/metabolismo , Ribonucleoproteínas/genética , Animais , Drosophila/embriologia , Proteínas de Drosophila/metabolismo , Olho/patologia , Olho/ultraestrutura , Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas , Mutação , Fenótipo , Ribonucleoproteínas/metabolismo
14.
Nat Commun ; 3: 760, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22453833

RESUMO

Within the short span of the cell cycle, poly(ADP-ribose) (pADPr) can be rapidly produced by poly(ADP-ribose) polymerases and degraded by poly(ADP-ribose) glycohydrolases. Here we show that changes in association between pADPr and heterogeneous nuclear ribonucleoproteins (hnRNPs) regulate germline stem cell (GSC) maintenance and egg chamber polarity during oogenesis in Drosophila. The association of pADPr and Hrp38, an orthologue of human hnRNPA1, disrupts the interaction of Hrp38 with the 5'-untranslated region of DE-cadherin messenger RNA, thereby diminishing DE-cadherin translation in progenitor cells. Following the reduction of DE-cadherin level, GSCs leave the stem cell niche and differentiate. Defects in either pADPr catabolism or Hrp38 function cause a decrease in DE-cadherin translation, leading to a loss of GSCs and mislocalization of oocytes in the ovary. Taken together, our findings suggest that Hrp38 and its association with pADPr control GSC self-renewal and oocyte localization by regulating DE-cadherin translation.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Oogênese , Poli Adenosina Difosfato Ribose/metabolismo , Ribonucleoproteínas/metabolismo , Células-Tronco/fisiologia , Animais , Caderinas/biossíntese , Caderinas/genética , Ciclo Celular , Diferenciação Celular , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Feminino , Fertilidade/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Oócitos , Oogênese/genética , Ovário/citologia , Ovário/metabolismo , Poli Adenosina Difosfato Ribose/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética , Transdução de Sinais/genética
15.
Methods Mol Biol ; 780: 83-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870256

RESUMO

PARP1 can modify a variety of proteins through conserved domains in noncovalent manner. Since poly(ADP-ribose) is highly negatively charged and has a strong binding affinity for its target proteins, noncovalent binding by poly(ADP-ribose) modulates the protein activity during developmental processes. In this section, the methods including co-immunoprecipitation and dot-blot assay were illustrated for determining the specific interaction between poly(ADP-ribose) and proteins. Furthermore, the protocol for RNA EMSA was described to determine whether pADPr binding to hnRNPs can inhibit RNA-binding ability of human hnRNP A1.


Assuntos
Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Immunoblotting , Imunoprecipitação , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica
16.
Proc Natl Acad Sci U S A ; 108(15): 6205-10, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444826

RESUMO

According to the histone code hypothesis, histone variants and modified histones provide binding sites for proteins that change the chromatin state to either active or repressed. Here, we identify histone variants that regulate the targeting and enzymatic activity of poly(ADP-ribose) polymerase 1 (PARP1), a chromatin regulator in higher eukaryotes. We demonstrate that PARP1 is targeted to chromatin by association with the histone H2A variant (H2Av)--the Drosophila homolog of the mammalian histone H2A variants H2Az/H2Ax--and that subsequent phosphorylation of H2Av leads to PARP1 activation. This two-step mechanism of PARP1 activation controls transcription at specific loci in a signal-dependent manner. Our study establishes the mechanism through which histone variants and changes in the histone modification code control chromatin-directed PARP1 activity and the transcriptional activation of target genes.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Dano ao DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Ativação Enzimática , Inativação Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Histonas/química , Histonas/genética , Mutação , Nucleossomos/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Regiões Promotoras Genéticas , Conformação Proteica , Retroelementos , Ativação Transcricional
17.
Curr Opin Genet Dev ; 20(5): 512-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20591646

RESUMO

Cell growth and differentiation during developmental processes require the activation of many inducible genes. However, eukaryotic chromatin, which consists of DNA and histones, becomes a natural barrier impeding access to the functional transcription machinery. To break through the chromatin barrier, eukaryotic organisms have evolved the strategy of using poly(ADP-ribose) polymerase 1 (PARP1) to modulate chromatin structure and initiate the steps leading to gene expression control. As a structural protein in chromatin, enzymatically silent PARP1 inhibits transcription by contributing to the condensation of chromatin, which creates a barrier against gene transcription. However, once activated by environmental stimuli and developmental signals, PARP1 can modify itself and other chromatin-associated proteins, thereby loosening chromatin to facilitate gene transcription. Here we discuss the roles of PARP1 in transcriptional control during development.


Assuntos
Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento Alternativo , Animais , Cromatina/genética , Proteínas de Drosophila/genética , Mutação em Linhagem Germinativa , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Transcrição Gênica
18.
Nucleic Acids Res ; 37(11): 3501-13, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19346337

RESUMO

The biological functions of poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) are not well understood. However, it is known that hnRNPs are involved in the regulation of alternative splicing for many genes, including the Ddc gene in Drosophila. Therefore, we first confirmed that poly(ADP-ribose) (pADPr) interacts with two Drosophila hnRNPs, Squid/hrp40 and Hrb98DE/hrp38, and that this function is regulated by Poly(ADP-ribose) Polymerase 1 (PARP1) and Poly(ADP-ribose) Glycohydrolase (PARG) in vivo. These findings then provided a basis for analyzing the role of pADPr binding to these two hnRNPs in terms of alternative splicing regulation. Our results showed that Parg null mutation does cause poly(ADP-ribosyl)ation of Squid and hrp38 protein, as well as their dissociation from active chromatin. Our data also indicated that pADPr binding to hnRNPs inhibits the RNA-binding ability of hnRNPs. Following that, we demonstrated that poly(ADP-ribosyl)ation of Squid and hrp38 proteins inhibits splicing of the intron in the Hsr omega-RC transcript, but enhances splicing of the intron in the Ddc pre-mRNA. Taken together, these findings suggest that poly(ADP-ribosyl)ation regulates the interaction between hnRNPs and RNA and thus modulates the splicing pathways.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , Cromatina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Técnicas de Inativação de Genes , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Resposta ao Choque Térmico , Ribonucleoproteínas Nucleares Heterogêneas/química , Dados de Sequência Molecular , Poli(ADP-Ribose) Polimerase-1 , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
19.
J Immunol ; 179(2): 1245-53, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17617617

RESUMO

Impaired expression of alpha-defensin antimicrobial peptides and overproduction of the proinflammatory cytokine IL-1beta have been associated with inflammatory bowel disease. In this study, we examine the interactions between alpha-defensins and IL-1beta and the role of defensin deficiency in the pathogenesis of inflammatory bowel disease. It was found that matrix metalloproteinase-7-deficient (MMP-7(-/-)) mice, which produce procryptdins but not mature cryptdins (alpha-defensins) in the intestine, were more susceptible to dextran sulfate sodium-induced colitis. Furthermore, both baseline and dextran sulfate sodium-induced IL-1beta production in the intestine were significantly up-regulated in MMP-7(-/-) mice compared with that in control C57BL/6 mice. To elucidate the molecular mechanism for the increased IL-1beta production in defensin deficiency in vivo, we evaluated the effect of defensins on IL-1beta posttranslational processing and release. It was found that alpha-defensins, including mouse Paneth cell defensins cryptdin-3 and cryptdin-4, human neutrophil defensin HNP-1, and human Paneth cell defensin HD-5, blocked the release of IL-1beta from LPS-activated monocytes, whereas TNF-alpha expression and release were not affected. Unlike alpha-defensins, human beta-defensins and mouse procryptdins do not have any effect on IL-1beta processing and release. Thus, alpha-defensins may play an important role in intestinal homeostasis by controlling the production of IL-1beta.


Assuntos
Defensinas/metabolismo , Homeostase/fisiologia , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/toxicidade , Defensinas/genética , Sulfato de Dextrana/toxicidade , Humanos , Imunoprecipitação , Metaloproteinase 7 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Monócitos , Processamento Pós-Transcricional do RNA , Homologia de Sequência de Aminoácidos
20.
Genetics ; 172(3): 1621-31, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16322507

RESUMO

PRAT (phosphoribosylamidotransferase; E.C. 2.4.2.14) catalyzes the first reaction in de novo purine nucleotide biosynthesis. In Drosophila melanogaster, the Prat and Prat2 genes are both highly conserved with PRAT sequences from prokaryotes and eukaryotes. However, Prat2 organization and expression during development is different from Prat. We used RNA interference (RNAi) to knock down expression of both Prat and Prat2 to investigate their functions. Using the GAL4-UAS system, Prat RNAi driven by Act5c-GAL4 or tubP-GAL4 causes variable pupal lethality (48-100%) and approximately 50% female sterility, depending on the transgenic strains and drivers used. This observation agrees with the phenotype previously observed for Prat EMS-induced mutations. Prat2 RNAi driven by Act5C-GAL4 or tubP-GAL4 also results in variable pupal lethality (61-93%) with the different transgenic strains, showing that Prat2 is essential for fly development. However, Prat2 RNAi-induced arrested pupae have a head eversion defect reminiscent of the "cryptocephal" phenotype, whereas Prat RNAi-induced arrested pupae die later as pharate adults. We conclude that Prat2 is required during the prepupal stage while Prat is more important for the pupal stage. In addition, Prat and Prat2 double RNAi results in more severe pupal lethal phenotypes, suggesting that Prat and Prat2 have partially additive functions during Drosophila metamorphosis.


Assuntos
Amidofosforribosiltransferase/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Morfogênese/genética , Purinas/biossíntese , Interferência de RNA/fisiologia , Sequências Repetitivas de Ácido Nucleico , Amidofosforribosiltransferase/fisiologia , Animais , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genes Letais , Fenótipo , Pupa/enzimologia , Pupa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...