Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 65: 153102, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31654989

RESUMO

BACKGROUND: Euphorbia factor L1 (EFL1) is a lathyrane-type diterpenoid from the medicinal herb Euphorbia lathyris L., and has been reported with intestinal toxicity, but the potential mechanisms remain unknown. PURPOSE: The objective of this study was to investigate the intestinal toxicity of EFL1 and the underlying mechanisms using nematode Caenorhabditis elegans. METHODS: C. elegans were exposed to 0-200 µM EFL1 for 72 h, then the survival rate, body length and body width, locomotion and chemoreception behavior, intestinal ROS and lipofuscin accumulation, intestinal permeability, and defecation rhythm were detected. The γ-aminobutyric acid(GABA) energic neurons AVL and DVB were shown via green fluorescent protein under a laser scanning confocal microscope. The structure of GABA transporter UNC-47 were predicted by homology modeling, and the interaction between EFL1 and UNC-47 was simulated by molecular docking. The mRNA expression of genes related to oxidative stress, intestinal permeability and defecation after EFL1 exposure were detected by RT-qPCR. RESULTS: EFL1 did not induce lethality of nematodes. The general toxicity was characterized by abnormal growth, locomotion and chemoreception. The intestinal barrier was leaky, due to down-regulated cell junction and active cation transport. The mean defecation cycle length in nematodes was decreased, relating to disorder vesicular and ion transport, enhanced rhythm behavior and muscle contraction. The dysfunctional defecation also attributed to injured UNC-47 protein, as well as GABAergic neurons AVL and DVB. Excessive ROS and lipofuscin accumulation were observed in intestine, along with activation of antioxidant enzymes of SOD, COQ7 and CAT. CONCLUSION: This study elucidated the EFL1-induced intestinal toxicity in nematodes, characterized as leaky intestinal barrier and accelerated defecation behavior. The underlying mechanisms were involved in oxidative stress, cell junctions, transportation, rhythm behavior, muscle contraction, and GABAergic neurons.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Defecação/efeitos dos fármacos , Diterpenos/efeitos adversos , Intestinos/efeitos dos fármacos , Fenilpropionatos/efeitos adversos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diterpenos/química , Regulação da Expressão Gênica , Absorção Intestinal/efeitos dos fármacos , Intestinos/patologia , Simulação de Acoplamento Molecular , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/química , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...