Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 579451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150605

RESUMO

PURPOSE: A 3D printed geometric phantom was developed that can be scanned with computed tomography (CT) and magnetic resonance imaging (MRI) to measure the geometric distortion and determine the relevant dose changes. MATERIALS AND METHODS: A self-designed 3D printed photosensitive resin phantom was used, which adopts grid-like structures and has 822 1 cm2 squares. The scanning plan was delivered by three MRI scanners: the Elekta Unity MR-Linac 1.5T, GE Signa HDe 1.5T, and GE Discovery-sim 750 3.0T. The geometric distortion comparison was concentrated on two 1.5T MRI systems, whereas the 3.0T MRI was used as a supplemental experiment. The most central transverse images in each dataset were selected to demonstrate the plane distortion. Some mark points were selected to analyze the distortion in the 3D direction based on the plane geometric distortion. A treatment plan was created with the off-line Monaco system. RESULTS: The distortion increases gradually from the center to the outside. The distortion range is 0.79 ± 0.40 mm for the Unity, 1.31 ± 0.56 mm for the GE Signa HDe, and 2.82 ± 1.48 mm for the GE Discovery-sim 750. Additionally, the geometric distortion slightly affects the actual planning dose of the radiotherapy. CONCLUSION: Geometric distortion increases gradually from the center to the outside. The distortion values of the Unity were smaller than those of the GE Signa HDe, and the Unity has the smallest geometric distortion. Finally, the Unity's dose variation best matched with the standard treatment plan.

2.
Med Biol Eng Comput ; 58(4): 831-842, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32034636

RESUMO

Blood-oxygen-level-dependent (BOLD) signal has been commonly used in functional magnetic resonance imaging (fMRI) to observe the activity in different areas of the brain or other organs. This signal is difficult to simulate, because its amplitude is nearly 1~3% and it is influenced by multiple factors. This study aimed to design and construct an active BOLD simulation phantom and test its stability and repeatability. The phantom consisted of two perpendicular loops. The BOLD signal was simulated by different stimuli generated by a regular periodic vibration current and transmission loops. Three scanners (Siemens skyra 3.0 T, Siemens verio 3.0 T, and GE signa HD 1.5 T) were used to test the stability and repeatability of the BOLD signal detection of the phantom. The percent signal change (PSC) was calculated for each stimulus. At baseline, the phantom exhibited stability, and the average signal variation was below 1% as revealed by the three scanners. The SNR of ROIs with different sizes were markedly high, being 2326.58 and 2389.24; and the ghosting ratio were 0.39% and 0.38%, and the stimuli detection efficiency for Siemens verio and Siemens skyra was 60% and 75%, respectively. The repeated scans of the same scanner for different stimuli were highly reproducible. In the three scanners, the PSC at the same location varied from nearly 1 to 3%. The areas activated on the phantom revealed by different scanners were comparatively consistent. The phantom designed for fMRI quantitative quality control displays good adaptability to different scanners and is easy to operate. It can reliably collect data by simple data processing. Graphical abstract fMRI phantom testing process.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Imagens de Fantasmas , Humanos , Processamento de Imagem Assistida por Computador , Controle de Qualidade , Sefarose , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...