Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 334: 118532, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972527

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragaloside IV (AS), a key active ingredient obtained from Chinese herb Astragalus mongholicus Bunge, exerts potent neuroprotective and anti-inflammatory effects for treating neurodegenerative diseases. However, mechanisms of AS on improvement of ischemic brain tissue repair remain unclear. AIM OF THE STUDY: This research aims at using magnetic resonance imaging (MRI) to noninvasively determine whether AS facilitates brain tissue repair, and investigating whether AS exerts brain remodeling through adenosine monophosphate-activated protein kinase (AMPK) metabolic signaling regulating key glycolytic enzymes and energy transporters, thereby impacting microglia polarization. MATERIALS AND METHODS: Ischemic stroke model in male Sprague-Dawley rats were induced through permanent occlusion of the middle cerebral artery (MCAO). Infarct volume, the alterations of brain microstructure and nerve fibers reorganization were examined by multi-parametric MRI. The pathological damages of myelinated axons and microglia polarization surrounding infarct tissue were detected using pathological techniques. Furthermore, M1/M2 microglia polarization associated protein, glycolytic rate-limiting enzymes, energy transporters and AMPK/mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) signal were examined both in ischemic stroke rats and BV2 microglia treated with lipopolysaccharide (LPS) + interferon-γ (IFN-γ) by western blotting. RESULTS: MRI revealed that AS obviously decreased infarct volume, relieved brain microstructure damage and improved nerve fibers reorganization in ischemic stroke rats. Histological tests supported MRI findings. Notably, AS promoted microglia M2 and reduced M1 polarization, induced the AMPK activation accompanied with decreased levels of phosphorylated mTOR and HIF-1α. Moreover, AS suppressed the expression of glycolytic rate-limiting enzymes and energy transporters in ischemic stroke rats and BV2 microglia. In contrast, these beneficial effects were greatly blocked by AMPK inhibitor compound C. CONCLUSION: Overall, these results collectively suggested that AS facilitated tissue remodeling that may be partially through modulating polarization of microglia in AMPK- dependent metabolic pathways after ischemic stroke.

2.
J Ethnopharmacol ; 323: 117620, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141792

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY: This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS: Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS: Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION: Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Astrócitos , AVC Isquêmico/tratamento farmacológico , Microglia , Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...