Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26763, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444500

RESUMO

The key to sEMG (surface electromyography)-based control of robotic hands is the utilization of sEMG signals from the affected hand of amputees to infer their motion intentions. With the advancements in deep learning, researchers have successfully developed viable solutions for CNN (Convolutional Neural Network)-based gesture recognition. However, most studies have primarily concentrated on utilizing sEMG data from the hands of healthy subjects, often relying on high-dimensional feature vectors obtained from a substantial number of electrodes. This approach has yielded high-performing sEMG recognition systems but has failed to consider the considerable inconvenience that the abundance of electrodes poses to the daily lives and work of patients. In this paper, we focused on transradial amputees and used sEMG data from the Ninapro DB3 database as our dataset. Firstly, we introduce a STFT (Short-Time Fourier Transform)-based time-frequency feature fusion map for sEMG. This map includes both time-frequency features and the time-frequency localization of sEMG signals. Secondly, we propose an Improved DenseNet (Dense Convolutional Network) model for recognizing motion intentions in the affected hand of amputees based on their sEMG signals. Finally, addressing the issue of optimizing the number of electrodes carried by amputees, we introduce the PCMIRR (Pearson Correlation and Motion Intention Recognition Rate) algorithm. This algorithm optimizes the number of channels by considering the Pearson correlation between the sEMG channels of amputees and the recognition rate of motion intentions in the affected hand based on single-channel sEMG data. The experimental results reveal that the recognition accuracy, recall, and F1 score achieved by the Improved DenseNet model were 93.82%, 93.61%, and 93.65%, respectively. When the number of electrodes was optimized to 8, the recognition accuracy reached 94.50%. In summary, this paper ultimately attained precise recognition of motion intentions in amputees' affected hands while utilizing the minimum number of sEMG channels. This method offers a novel approach to sEMG-based control of bionic robotic hands.

2.
Front Nutr ; 10: 1247075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920287

RESUMO

Grading dried shiitake mushrooms is an indispensable production step, as there are large quality differences between different grades, which affect the product's price and marketability. Dried shiitake mushroom samples have irregular shapes, small morphological differences between different grades of the same species, and they may occur in mixed grades, which causes challenges to the automatic grade recognition using machine vision. In this study, a comprehensive method to solve this problem is provided, including image acquisition, preprocessing, dataset creation, and grade recognition. The osprey optimization algorithm (OOA) is used to improve the computational efficiency of Otsu's threshold binarization and obtain complete mushroom contours samples efficiently. Then, a method for dried shiitake mushroom grade recognition based on the improved VGG network (D-VGG) is proposed. The method uses the VGG16 network as the base framework, optimizes the convolutional layer of the network, and uses a global average pooling layer instead of a fully connected layer to reduce the risk of model overfitting. In addition, a residual module and batch normalization are introduced to enhance the learning effect of texture details, accelerate the convergence of the model, and improve the stability of the training process. An improved channel attention network is proposed to enhance the feature weights of different channels and improve the grading performance of the model. The experimental results show that the improved network model (D-VGG) can recognize different dried shiitake mushroom grades with high accuracy and recognition efficiency, achieving a final grading accuracy of 96.21%, with only 46.77 ms required to process a single image. The dried shiitake mushroom grade recognition method proposed in this study provides a new implementation approach for the dried shiitake mushroom quality grading process, as well as a reference for real-time grade recognition of other agricultural products.

3.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896474

RESUMO

Detection of the four tobacco shred varieties and the subsequent unbroken tobacco shred rate are the primary tasks in cigarette inspection lines. It is especially critical to identify both single and overlapped tobacco shreds at one time, that is, fast blended tobacco shred detection based on multiple targets. However, it is difficult to classify tiny single tobacco shreds with complex morphological characteristics, not to mention classifying tobacco shreds with 24 types of overlap, posing significant difficulties for machine vision-based blended tobacco shred multi-object detection and unbroken tobacco shred rate calculation tasks. This study focuses on the two challenges of identifying blended tobacco shreds and calculating the unbroken tobacco shred rate. In this paper, a new multi-object detection model is developed for blended tobacco shred images based on an improved YOLOv7-tiny model. YOLOv7-tiny is used as the multi-object detection network's mainframe. A lightweight Resnet19 is used as the model backbone. The original SPPCSPC and coupled detection head are replaced with a new spatial pyramid SPPFCSPC and a decoupled joint detection head, respectively. An algorithm for two-dimensional size calculation of blended tobacco shreds (LWC) is also proposed, which is applied to blended tobacco shred object detection images to obtain independent tobacco shred objects and calculate the unbroken tobacco shred rate. The experimental results showed that the final detection precision, mAP@.5, mAP@.5:.95, and testing time were 0.883, 0.932, 0.795, and 4.12 ms, respectively. The average length and width detection accuracy of the blended tobacco shred samples were -1.7% and 13.2%, respectively. The model achieved high multi-object detection accuracy and 2D size calculation accuracy, which also conformed to the manual inspection process in the field. This study provides a new efficient implementation method for multi-object detection and size calculation of blended tobacco shreds in cigarette quality inspection lines and a new approach for other similar blended image multi-object detection tasks.

4.
Front Plant Sci ; 14: 1108560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139110

RESUMO

Introduction: The classification of the four tobacco shred varieties, tobacco silk, cut stem, expanded tobacco silk, and reconstituted tobacco shred, and the subsequent determination of tobacco shred components, are the primary tasks involved in calculating the tobacco shred blending ratio. The identification accuracy and subsequent component area calculation error directly affect the composition determination and quality of the tobacco shred. However, tiny tobacco shreds have complex physical and morphological characteristics; in particular, there is substantial similarity between the expanded tobacco silk and tobacco silk varieties, and this complicates their classification. There must be a certain amount of overlap and stacking in the distribution of tobacco shreds on the actual tobacco quality inspection line. There are 24 types of overlap alone, not to mention the stacking phenomenon. Self-winding does not make it easier to distinguish such varieties from the overlapped types, posing significant difficulties for machine vision-based tobacco shred classification and component area calculation tasks. Methods: This study focuses on two significant challenges associated with identifying various types of overlapping tobacco shreds and acquiring overlapping regions to calculate overlapping areas. It develops a new segmentation model for tobacco shred images based on an improved Mask region-based convolutional neural network (RCNN). Mask RCNN is used as the segmentation network's mainframe. Convolutional network and feature pyramid network (FPN) in the backbone are replaced with Densenet121 and U-FPN, respectively. The size and aspect ratios of anchors parameters in region proposal network (RPN) are optimized. An algorithm for the area calculation of the overlapped tobacco shred region (COT) is also proposed, which is applied to overlapped tobacco shred mask images to obtain overlapped regions and calculate the overlapped area. Results: The experimental results showed that the final segmentation accuracy and recall rates are 89.1% and 73.2%, respectively. The average area detection rate of 24 overlapped tobacco shred samples increases from 81.2% to 90%, achieving high segmentation accuracy and overlapped area calculation accuracy. Discussion: This study provides a new implementation method for the type identification and component area calculation of overlapped tobacco shreds and a new approach for other similar overlapped image segmentation tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...