Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406650, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818631

RESUMO

Dispersion of single atoms (SAs) in the host is important for optimizing catalytic activity. Herein, we propose a novel strategy to tune oxygen vacancies in CeO2-X directionally anchoring the single atom platinum (PtSA), which is uniformly dispersed on the rGO. The catalyst's performance for the hydrogen evolution reaction (HER) can be enhanced by controlling different densities of CeO2-X in rGO. The PtSA performs best optimally densified and loaded on homogeneous and moderately densified CeO2-X/rGO (PtSA-M-CeO2-X/rGO). It exhibited high activity in HER with an overpotential of 25 mV at 0.5 M H2SO4 and 33 mV at 1 KOH than that of almost reported electrocatalysts. Furthermore, it exhibited stability for 90 hours at -100 mA cm-2 in 1 KOH and -150 mA cm-2 in 0.5 M H2SO4 conditions, respectively. Through comprehensive experiments and theoretical calculations, the suitable dispersion density of PtSA on the defects of CeO2-X with more active sites gives the potential for practical applications. This research paves the way for developing single-atom catalysts with exceptional catalytic activity and stability, holding promise in advanced green energy conversion through defects engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...