Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 276: 197825, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785305

RESUMO

Hepatitis B virus (HBV) is the prototype of hepadnaviruses, which can be subgrouped into orthohepadnaviruses infecting mammals, avihehepadnaviruses of birds, metahepadnaviruses of fish, and herpetohepadnaviruses of amphibians and reptiles. The middle (M) envelope protein and e antigen are new additions in the evolution of hepadnaviruses. They are alternative translation products of the transcripts for small (S) envelope and core proteins, respectively. For HBV, e antigen is converted from precore/core protein by removal of N-terminal signal peptide followed by furin-mediated cleavage of the basic C-terminus. This study compared old and newly discovered hepadnaviruses for their envelope protein and e antigen expression or processing. The S protein of bat hepatitis B virus (BHBV) and two metahepadnaviruses is probably myristoylated, in addition to two avihepadnaviruses. While most orthohepadnaviruses express a functional M protein with N-linked glycosylation near the amino-terminus, most metahepadnaviruses and herpetohepadnaviruses probably do not. These viruses and one orthohepadnavirus, the shrew hepatitis B virus, lack an open precore region required for e antigen expression. Potential furin cleavage sites (RXXR sequence) can be found in e antigen precursors of orthohepadnaviruses and avihepadnaviruses. Despite much larger precore/core proteins of avihepadnaviruses and their limited sequence homology with those of orthohepadnaviruses, their proximal RXXR motif can be aligned with a distal RXXR motif for orthohepadnaviruses. Thus, furin or another basic endopeptidase is probably the shared enzyme for hepadnaviral e antigen maturation. A precore-derived cysteine residue is involved in forming intramolecular disulfide bond of HBV e antigen to prevent particle formation, and such a cysteine residue is conserved for both orthohepadnaviruses and avihepadnaviruses. All orthohepadnaviruses have an X gene, while all avihepadnaviruses can express the e antigen. M protein expression appears to be the most recent event in the evolution of hepadnaviruses.


Assuntos
Antígenos Virais/genética , Evolução Biológica , Regulação Viral da Expressão Gênica , Infecções por Hepadnaviridae/virologia , Hepadnaviridae/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Antígenos Virais/imunologia , Evolução Molecular , Genoma Viral , Genômica/métodos , Hepadnaviridae/imunologia , Infecções por Hepadnaviridae/imunologia , Hepatite B/imunologia , Hepatite B/virologia , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Humanos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
2.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793953

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a hepatitis B virus (HBV) receptor, and its overexpression in HepG2 cell lines leads to efficient secretion of hepatitis B e antigen (HBeAg) following challenge with a large dose of cell culture-derived HBV (cHBV) particles. However, NTCP-reconstituted HepG2 cells are inefficiently infected by patient serum-derived HBV (sHBV) and release very little hepatitis B surface antigen (HBsAg) following cHBV infection, unlike differentiated HepaRG cells, which are naturally susceptible to both cHBV and sHBV particles. Here, we investigated whether NTCP could explain the different behaviors of the two cell types. Endogenous NTCP protein from differentiated HepaRG cells was unglycosylated despite wild-type coding sequence. HepaRG cells stably transfected with an epitope-tagged NTCP expression construct displayed higher sHBV but not cHBV susceptibility than cells transfected with the null mutant. Tagged NTCP introduced to both HepG2 and HepaRG cells was glycosylated, with N5 and N11 being sites of N-linked glycosylation. Mutating N5, N11, or both did not alter cell surface availability of NTCP or its subcellular localization, with both the singly glycosylated and nonglycosylated forms still capable of mediating cHBV infection in HepG2 cells. In conclusion, nonglycosylated NTCP is expressed by differentiated HepaRG cells and capable of mediating cHBV infection in HepG2 cells, but it cannot explain differential susceptibility of HepaRG and HepG2/NTCP cells to cHBV versus sHBV infection and different HBsAg/HBeAg ratios following cHBV infection. The responsible host factor(s) remains to be identified.IMPORTANCE HBV can infect differentiated HepaRG cells and also HepG2 cells overexpressing NTCP, the currently accepted HBV receptor. However, HepG2/NTCP cells remain poorly susceptible to patient serum-derived HBV particles and release very little hepatitis B surface antigen following infection by cell culture-derived HBV. We found differentiated HepaRG cells expressed nonglycosylated NTCP despite a wild-type coding sequence. NTCP introduced to HepG2 cells was glycosylated at two N-linked glycosylation sites, but mutating either or both sites failed to prevent infection by cell culture-derived HBV or to confer susceptibility to serum-derived HBV. Overexpressing NTCP in HepRG cells did not increase infection by cell culture-derived HBV or distort the ratio between the two viral antigens. These findings suggest that host factors unique to HepaRG cells are required for efficient infection by serum-derived HBV, and factors other than NTCP contribute to balanced viral antigen production following infection by cell culture-derived HBV.


Assuntos
Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Proteínas Virais/metabolismo , Glicosilação , Células Hep G2 , Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Proteínas Virais/genética
3.
Chembiochem ; 19(3): 221-228, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29171900

RESUMO

Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Química Combinatória , DNA/genética , Evolução Molecular Direcionada , Epóxido Hidrolases/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Epóxido Hidrolases/metabolismo , Estrutura Molecular , Rhodococcus/enzimologia , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...