Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 146: 237-240, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969451

RESUMO

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched. Herein, we briefly review the related wastewater characteristics and the history of water treatment in space stations, and we focus on future challenges and perspectives, aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Voo Espacial
2.
Environ Sci Ecotechnol ; 21: 100397, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38434491

RESUMO

Recovering extracellular polymeric substances (EPS) from waste granular sludge offers a cost-effective and sustainable approach for transforming wastewater resources into industrially valuable products. Yet, the application potential of these EPS in real-world scenarios, particularly in paper manufacturing, remains underexplored. Here we show the feasibility of EPS-based biomaterials, derived from anaerobic granular sludges, as novel coating agents in paper production. We systematically characterised the rheological properties of various EPS-based suspensions. When applied as surface sizing agents, these EPS-based biomaterials formed a distinct, ultra-thin layer on paper, as evidenced by scanning electron microscopy. A comprehensive evaluation of water and oil penetration, along with barrier properties, revealed that EPS-enhanced coatings markedly diminished water absorption while significantly bolstering oil and grease resistance. Optimal performance was observed in EPS variants with elevated protein and hydrophobic contents, correlating with their superior rheological characteristics. The enhanced water-barrier and grease resistance of EPS-coated paper can be attributed to its non-porous, fine surface structure and the functional groups in EPS, particularly the high protein content and hydrophobic humic-like substances. This research marks the first demonstration of utilizing EPS from anaerobic granular sludge as paper-coating biomaterials, bridging a critical knowledge gap in the sustainable use of biopolymers in industrial applications.

3.
Med Phys ; 51(4): 2578-2588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37966123

RESUMO

BACKGROUND: Bone metastasis is a common event in lung cancer progression. Early diagnosis of lung malignant tumor with bone metastasis is crucial for selecting effective treatment strategies. However, 14.3% of patients are still difficult to diagnose after SPECT/CT examination. PURPOSE: Machine learning analysis of [99mTc]-methylene diphosphate (99mTc-MDP) SPECT/CT scans to distinguish bone metastases from benign bone lesions in patients with lung cancer. METHODS: One hundred forty-one patients (69 with bone metastases and 72 with benign bone lesions) were randomly assigned to the training group or testing group in a 7:3 ratio. Lesions were manually delineated using ITK-SNAP, and 944 radiomics features were extracted from SPECT and CT images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomics features in the training set, and the single/bimodal radiomics models were established based on support vector machine (SVM). To further optimize the model, the best bimodal radiomics features were combined with clinical features to establish an integrated Radiomics-clinical model. The diagnostic performance of models was evaluated using receiver operating characteristic (ROC) curve and confusion matrix, and performance differences between models were evaluated using the Delong test. RESULTS: The optimal radiomics model comprised of structural modality (CT) and metabolic modality (SPECT), with an area under curve (AUC) of 0.919 and 0.907 for the training and testing set, respectively. The integrated model, which combined SPECT, CT, and two clinical features, exhibited satisfactory differentiation in the training and testing set, with AUC of 0.939 and 0.925, respectively. CONCLUSIONS: The machine learning can effectively differentiate between bone metastases and benign bone lesions. The Radiomics-clinical integrated model demonstrated the best performance.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Aprendizado de Máquina , Estudos Retrospectivos
4.
Environ Pollut ; 342: 123049, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042470

RESUMO

Smoldering can achieve effective disposal of sewage sludge (SS) with high moisture content at low energy input, providing social and economic benefits. However, smoldering is accompanied by the emission of high concentrations of CO/NOx, and thus, it requires sufficient attention. This study comprehensively investigates the effects of SS characteristics and experimental parameters on CO/NOx emissions and smoldering characteristics. Results showed that when the moisture content of SS increases from 35% to 50%, CO concentration increases while NOx formation is simultaneously inhibited. After airflow rate exceeds 5 cm/s, the concentrations of CO and NOx begin to decrease. When SS concentration is increased to 20%, the emission concentration of gas pollutants is directly increased. However, high temperatures inhibit the formation of NOx. When the particle size range is 180-270 µm, the formation of CO/NOx is promoted. Finally, a back propagation (BP) neural network model is constructed with SS characteristics and experimental parameters as input conditions, and CO/NOx emission concentration, smoldering velocity, and smoldering temperature as output parameters. The BP neural network model can effectively predict the emission concentration of CO/NOx and smoldering characteristics, providing support for intelligent control scenarios related to SS smoldering, it will help to further explore the great potential of smoldering treatment.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Esgotos , Poluentes Atmosféricos/análise , Temperatura
5.
Water Res ; 245: 120625, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820474

RESUMO

Capacitive electrodialysis (CED) is an emerging and promising desalination technology for decentralized drinking water production. Brackish water, often used as a drinking water source, may contain organic micropollutants (OMPs), thus raising environmental and health concerns. This study investigated the transport of OMPs in a fully-functional decentralized CED system for drinking water production under realistic operational conditions. Eighteen environmentally-relevant OMPs (20 µg L-1) with different physicochemical properties (charge, size, hydrophobicity) were selected and added to the feed water. The removal of OMPs was significantly lower than that of salts (∼94%), mainly due to their lower electrical mobility and higher steric hindrance. The removal of negatively-charged OMPs reached 50% and was generally higher than that of positively-charged OMPs (31%), whereas non-charged OMPs were barely transported. Marginal adsorption of OMPs was found under moderate water recovery (50%), in contrast to significant adsorption of charged OMPs under high water recovery (80%). The five-month operation demonstrated that the CED system could reliably produce water with low salt ions and TOC concentrations, meeting the respective WHO requirements. The specific energy consumption of the CED stack under 80% water recovery was 0.54 kWh m-3, which is competitive to state-of-the-art RO, ED, and emerging MCDI in brackish water desalination. Under this condition, the total OPEX was 2.43 € m-3, of which the cost of membrane replacement contributed significantly. Although the CED system proved to be a robust, highly adaptive, and fully automated technology for decentralized drinking water production, it was not highly efficient in removing OMPs, especially non-charged OMPs.


Assuntos
Água Potável , Purificação da Água , Cloreto de Sódio , Íons , Adsorção , Águas Salinas
6.
J Cancer Res Clin Oncol ; 149(14): 13353-13361, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491635

RESUMO

BACKGROUND: To establish a radiomics-clinical model based on 99mTc-MDP SPECT/CT for distinguishing between bone metastasis and benign bone disease in tumor patients. METHODS: We retrospectively analyzed 256 patients (122 with bone metastasis and 134 with benign bone disease) and randomized them in the ratio of 6:2:2 into training, test and validation sets. All patients underwent 99mTc-labeled methylene diphosphonate (99mTc-MDP) SPECT/CT. We manually outlined the volumes of interest (VOIs) of lesions using ITK-SNAP from SPECT and CT images. In the training set, radiomics features were extracted using PyRadiomics and selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Then, we established three radiomics models (CT, SPECT and SPECT-CT models) using support vector machine (SVM). In addition, a radiomics-clinical model was constructed using multivariable logistic regression analysis. The four models' performance was assessed using the area under the receiver operating characteristic curve (AUC). Using DeLong test to make comparisons between the ROC (receiver operating characteristic) curves of different models. The clinical utility of the models was evaluated using decision curve analysis (DCA). RESULTS: The radiomics-clinical displayed excellent performance, and its AUC was 0.941 and 0.879 in the training and test sets. The DCA of radiomics-clinical model showed the highest clinical utility. CONCLUSIONS: The radiomics-clinical nomogram for identifying bone metastasis and benign bone disease in tumor patients was suitable to assist in clinical decision.

7.
J Environ Manage ; 343: 118202, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229861

RESUMO

Aerobic granular sludge (AGS) has different physicochemical properties and microbial communities compared to conventional activated sludge (CAS), which may result in different behaviors during anaerobic fermentation and require further investigation. This study investigated the effect of granule size and sludge structure on the hydrolysis and acidification of AGS. Experimental results show that AGS exhibited significantly higher soluble chemical oxygen demand (SCOD) dissolution and total volatile fatty acids (TVFA) production (330.6-430.3 mg/gVSS and 231.0-312.5 mgCOD/gVSS) compared to conventional activated sludge (CAS) (167.0 mg/gVSS and 133.3 mgCOD/gVSS). This is because AGS (90.6-96.9 mg/gVSS) had higher extracellular polymeric substances (EPS) content than CAS (81.2 mg/gVSS). EPS can not only serve as substrates but also release the trapped hydrolases. Moreover, the relative abundances of hydrolytic/acidogenic bacteria and genes were higher in AGS (0.46%-3.60% and 3.01 × 10-3%-4.04 × 10-3%) than in CAS (0.30% and 1.23 × 10-3%). The optimal granule size for AGS fermentation was found to be 500-1600 µm. The crushing of granule structure promoted the dissolution of small amounts of EPS and the release of some trapped hydrolases, thereby potentially enhancing the enzyme-substrate contacts and bacteria-substrate interactions. Therefore, the highest SCOD dissolution (510.6 mg/gVSS) and TVFA production (352.1 mgCOD/gVSS) from crushed 500-1600 µm AGS were observed. Overall, the findings of this study provide valuable insights into the recovery of organic carbon from AGS via anaerobic fermentation.


Assuntos
Reatores Biológicos , Esgotos , Fermentação , Esgotos/química , Hidrólise , Anaerobiose , Bactérias , Hidrolases , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos
8.
Bioresour Technol ; 373: 128713, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758644

RESUMO

This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4-2.2 m3 m-2 h-1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m-2 h-1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d-1, 30 °C) and achieve relatively low NO3--N accumulation (13%). Likely FA levels of around 1.3-3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.


Assuntos
Amônia , Compostos de Amônio , Oxidação Anaeróbia da Amônia , Estudos de Viabilidade , Reatores Biológicos , Nitrogênio , Oxirredução
9.
Environ Sci Technol ; 56(14): 10289-10298, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35796480

RESUMO

Recovering phosphorus from wastewater in more concentrated forms has potential to sustainably recirculate phosphorus from cities to agriculture. The environmental sustainability of wastewater-based phosphorus recovery processes or wastewater-derived phosphorus products can be evaluated using life cycle assessment (LCA). Many LCA studies used a process perspective to account for the impacts of integrating phosphorus recovery processes at wastewater treatment plants, while some used a product perspective to assess the impacts of producing wastewater-derived phosphorus products. We demonstrated the application of an end-user perspective by assessing life cycle environmental impacts of substituting half of the conventional phosphorus rock-based fertilizers used in three crop production systems with wastewater-derived phosphorus products from six recovery pathways (RPs). The consequential LCA results show that the substitution reduces global warming potential, eutrophication potential, ecotoxicity potential, and acidification potential of the assessed crop production systems in most RPs and scenarios. The end-user perspective introduced in this study can (i) complement with the process perspective and the product perspective to give a more holistic picture of environmental impacts along the "circular economy value chains" of wastewater-based resource recovery, (ii) enable systemwide assessment of wide uptake of wastewater-derived products, and (iii) draw attention to understanding the long-term environmental impacts of using wastewater-derived products.


Assuntos
Fósforo , Águas Residuárias , Agricultura , Animais , Meio Ambiente , Estágios do Ciclo de Vida
10.
Heliyon ; 7(11): e08445, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34901500

RESUMO

Implementation of onsite bioremediation technologies is essential for textile industries due to rising concerns in terms of water resources and quality. Partial nitritation-anaerobic ammonium oxidation (PN/A) processes emerged as a valid, but unexplored, solution. In this study, the performance of a PN/A pilot-scale (9 m3) sequencing batch reactor treating digital textile printing wastewater (10-40 m3 d-1) was monitored by computing nitrogen (N) removal rate and efficiencies. Moreover, the structure of the bacterial community was assessed by next generation sequencing and quantitative polymerase chain reaction (qPCR) analyses of several genes, which are involved in the N cycle. Although anaerobic ammonium oxidation activity was inhibited and denitrification occurred, N removal rate increased from 16 to 61 mg N g VSS-1 d-1 reaching satisfactory removal efficiency (up to 70%). Ammonium (18-70 mg L-1) and nitrite (16-82 mg L-1) were detected in the effluent demonstrating an unbalance between the aerobic and anaerobic ammonia oxidation activity, while constant organic N was attributed to recalcitrant azo dyes. Ratio between nitrification and anammox genes remained stable reflecting a constant ammonia oxidation activity. A prevalence of ammonium oxidizing bacteria and denitrifiers suggested the presence of alternative pathways. PN/A resulted a promising cost-effective alternative for textile wastewater N treatment as shown by the technical-economic assessment. However, operational conditions and design need further tailoring to promote the activity of the anammox bacteria.

11.
Sci Total Environ ; 797: 149092, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34303231

RESUMO

Partial nitration-anammox is a resource-efficient technology for nitrogen removal from wastewater. However, the advantages of this nitrogen removal technology are challenged by the emission of N2O, a potent greenhouse gas. In this study, a granular sludge one-stage partial nitritation-anammox reactor comprising granules and flocs was run for 337 days in the presence of influent organics to investigate its effect on N removal and N2O emissions. Besides, the effect of aeration control strategies and flocs removal was investigated as well. The interpretation of the experimental results was complemented with modelling and simulation. The presence of influent organics (1 g COD g-1 N) helped to suppress NOB and significantly reduced the overall N2O emissions while having no significant effect on anammox activity. Besides, long-term monitoring of the reactor indicated that constant airflow rate control resulted in more stable effluent quality and less N2O emissions than DO control. Still, floc removal reduced N2O emissions at DO control but increased N2O emissions at constant airflow rate. Furthermore, anammox bacteria could significantly reduce N2O production during heterotrophic denitrification, likely via competition for NO with heterotrophs. Overall, this study demonstrated that the presence of influent organics together with proper aeration control strategies and floc management could significantly reduce the N2O emissions without compromising nitrogen removal efficiency during one-stage partial nitritation-anammox processes.


Assuntos
Compostos de Amônio , Desnitrificação , Reatores Biológicos , Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
12.
Environ Sci Pollut Res Int ; 28(34): 46643-46654, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33078358

RESUMO

Digital textile printing (DTP) is a game-changer technology that is rapidly expanding worldwide. On the other hand, process wastewater is rich in ammoniacal and organic nitrogen, resulting in relevant issues for discharge into sewer system and treatment in centralized plants. The present research is focused on the assessment of the partial nitritation/anammox process in a single-stage granular sequencing batch reactor for on-site decentralized treatment. The technical feasibility of the process was assessed by treating wastewater from five DTP industries in a laboratory-scale reactor, in one case investigating long-term process stabilization. While experimental results indicated nitrogen removal efficiencies up to about 70%, complying with regulations on discharge in sewer system, these data were used as input for process modelling, whose successful parameter calibration was carried out. The model was applied to the simulation of two scenarios: (i) the current situation of a DTP company, in which wastewater is discharged into the sewer system and treated in a centralized plant, (ii) the modified situation in which on-site decentralized treatment for DTP wastewater is implemented. The second scenario resulted in significant improvements, including reduced energy consumption (- 15%), reduced greenhouse gases emission, elimination of external carbon source for completing denitrification at centralized WWTP and reduced sludge production (- 25%).


Assuntos
Nitrogênio , Águas Residuárias , Amônia , Reatores Biológicos , Desnitrificação , Oxirredução , Avaliação de Processos em Cuidados de Saúde , Esgotos , Têxteis
13.
Environ Sci Technol ; 54(21): 13953-13962, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095565

RESUMO

Heterotrophic denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two microbial processes competing for two shared resources, namely, nitrate and organic carbon (COD). Their competition has great implications for nitrogen loss, conservation, and greenhouse gas emissions. Nevertheless, a comprehensive and mechanistic understanding of the governing factors for this competition is still lacking. We applied the resource-ratio theory to study this competition and validated the theory with experimental data from continuous cultures reported in the literature. Based on this theory, we revealed that influent COD/N ratio alone was not sufficient to predict the competition outcome as the boundary values for different competition outcomes changed substantially with influent resource concentrations. The stoichiometry of the two processes was determinative for the boundaries, whereas the affinity for the shared resources (KS), maximum specific growth rate (µmax) of the two species, and the dilution rate had significant impacts as well but mainly at low influent resource concentrations (e.g., <100 µM nitrate). The presented approach allows for a more comprehensive understanding of the parameters controlling microbial competition. The computational comparison between continuous and batch cultures could explain seemingly conflicting experimental results as to the impact of the COD/N ratio. The results also include testable hypotheses and tools for understanding and managing the fate of nitrate in ecosystems, which could also be applied more widely to other species competing for two shared resources.


Assuntos
Compostos de Amônio , Desnitrificação , Ecossistema , Nitratos , Nitrogênio , Oxirredução
14.
Magn Reson Imaging ; 68: 30-35, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31978516

RESUMO

OBJECTIVE: To prospectively evaluate the ability of IVIM-DWI and DCE-MRI in detecting early activity of sacroiliitis in rat model of ankylosing spondylitis by comparing with pathological results. METHODS: 20 wistar male rats were induced by bovine proteoglycan combined with complete/incomplete Freund's adjuvant as model group, and 20 healthy male rats were used as the control group. The parameters of IVIM-DWI and DCE-MRI in synovial regions of SIJ were measured respectively at 7th, 12th, 17th, and 22th weeks after the last induction, and the pathological features of SIJ were taken also, further studying the pathological characteristics of sacroiliac region. Independent sample t-test and one-way ANOVA were used for statistical analysis. The prediction parameters and diagnostic efficiency were compared by ROC curve. RESULTS: There was no significant difference of image parameters between the model and control groups at the 7th, 12th weeks after the last induction, and there were no positive findings in histopathological examination at the same time. At the 17th week after induction, the f and Fenh%, Senh% between the model and the control groups were statistically significant. At the 22th week, there was a statistically significant increase all the values in model group than those in control group (P < 0.05). Histologic examination confirmed inflmmtorycell infiitrtion at the 17th week and pannus forming of synovium on the surface of cartilage at the 22th week in the model groups. The Fenh%, Senh%, Dslow and f had the moderate diagnostic efficiency and the areas under the curve were 0.77, 0.75, 0.77 and 0.82 respectively. The Senh% demonstrated the highest sensitivity (71.4%) and f demonstrated the highest specificity (95.0%). CONCLUSION: IVIM-DWI and DCE-MRI can be used as the sensitive imaging methods to detect and accurate diagnosis the early activity of sacroiliitis in AS.


Assuntos
Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Sacroileíte/diagnóstico por imagem , Espondilite Anquilosante/diagnóstico por imagem , Análise de Variância , Animais , Área Sob a Curva , Bovinos , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Masculino , Movimento (Física) , Variações Dependentes do Observador , Proteoglicanas/química , Curva ROC , Ratos , Ratos Wistar , Sensibilidade e Especificidade
15.
Water Sci Technol ; 79(9): 1808-1820, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31241486

RESUMO

There are numerous successful studies on optimizing the performance of conventional activated sludge (CAS)-based wastewater treatment plants. However, recent studies have shown that a more significant improvement of the plant performance is achievable through integration of established technologies in novel process schemes. High-rate activated sludge system, chemically enhanced primary treatment, partial nitritation-anammox, partial nitrification-denitrification over nitrite and anaerobic digestion are integrated in two process schemes to determine to which extent energy savings and energy production can be achieved with these new process layouts compared to a CAS-based process scheme. The results presented in this paper show that there is potential for achieving future energy-positive water resource recovery facilities through novel integration of mature technologies for municipal wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Recursos Hídricos , Reatores Biológicos , Nitrificação , Nitrogênio , Esgotos , Águas Residuárias
16.
Sci Total Environ ; 596-597: 18-25, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412567

RESUMO

The importance of methane (CH4) emissions from landfills has been extensively documented, while the nitrous oxide (N2O) emissions from landfills are considered negligible. In this study, three landfills were selected to measure CH4 and N2O emissions using the static chamber method. Dongbu (DB) and Dongfu (DF) landfills, both located in Xiamen city, Fujian Province, were classified as sanitary. The former started to receive solid waste from Xiamen city in 2009, and the latter was closed in 2009. Nanjing (NJ) landfill, located in Nanjing county, Fujian Province, was classified as managed. Results showed that for the landfill reservoirs, CH4 emissions were significant, while N2O emissions occurred mainly in operating areas (on average, 16.3 and 19.0mgN2Om-2h-1 for DB and NJ landfills, respectively) and made a negligible contribution to the total greenhouse gas emissions in term of CO2 equivalent. However, significant N2O emissions were observed in the leachate treatment systems of sanitary landfills and contributed 72.8% and 45.6% of total emissions in term of CO2 equivalent in DB and DF landfills, respectively. The N2O emission factor (EF) of the leachate treatment systems was in the range of 8.9-11.9% of the removed nitrogen. The total N2O emissions from the leachate treatment systems of landfills in Xiamen city were estimated to be as high as 8.55gN2O-Ncapita-1yr-1. These results indicated that N2O emissions from leachate treatment systems of sanitary landfills were not negligible and should be included in national and/or local inventories of greenhouse gas emissions.

17.
Bioresour Technol ; 233: 363-372, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28285229

RESUMO

Anammox bacteria can perform dissimilatory nitrate reduction to ammonium (DNRA) with nitrite as intermediate coupled to the oxidation of volatile fatty acids (VFA). Batch tests with enriched anammox and a co-culture of anammox and heterotrophic bacteria showed the capacity of Candidatus 'Brocadia fulgida' to perform the DNRA coupled to the anammox reaction (DNRA-anammox) at a high rate although the culture was not previously adapted to VFA. From thermodynamic calculations it could be stated that low COD/N influent ratios favour the DNRA-anammox transformation over heterotrophic conversions since more free energy is gained. A process scheme is proposed for an innovative nitrogen removal system in which the nitrate produced by nitrite oxidizing bacteria and/or anammox bacteria is converted during DNRA-anammox pathway, resulting in a sustainable nitrogen removal from municipal wastewater while circumventing the troublesome out-selection of nitrite oxidizing bacteria encountered in mainstream applications.


Assuntos
Reatores Biológicos/microbiologia , Águas Residuárias/microbiologia , Anaerobiose , Bactérias/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução
18.
J Air Waste Manag Assoc ; 67(4): 507-515, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27996634

RESUMO

High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH4 retention, 99.8% (CH4 mean flux of 12 mg C m-2 h-1) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m-2 h-1) of the same landfill age. Fresh waste at the working face emitted a large fraction of N2O, with average fluxes of 10 mg N m-2 h-2, while N2O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH4 emissions were elevated under high air temperatures but decreased as landfill age increased. N2O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr-1 in CO2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH4 (41.9%), while the working face contributed the most N2O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control. IMPLICATIONS: Monitoring of GHG emissions at three different cover types in a municipal solid waste landfill during a 1-year period showed that the working face was a hotspot of N2O, which should draw attention. High CH4 fluxes occurred on the permeable surface covering a 1- to 2-year-old landfill. In contrast, the high-density polyethylene (HDPE) membrane achieved high CH4 retention, and therefore is a recommended cover material for GHG control.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Instalações de Eliminação de Resíduos , Efeito Estufa , Polietileno , Estações do Ano , Resíduos Sólidos
19.
Waste Manag ; 63: 3-10, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27523711

RESUMO

Intensive nitrous oxide (N2O) emissions usually occur at the working face of landfills. However, the specific amounts and contributions of the multiple pathways to N2O emissions are poorly understood. N2O emissions and the mutual conversions of N-species in both open and sealed simulated landfill reactors filled with fresh refuse were examined during a 100-h incubation period, and N2O sources were calculated using 15N isotope labelling. N2O peak fluxes were above 70µgNkg-1 waste h-1 for both treatments. The sealed incubation reactors became a N2O sink when N2O in the ambient environment was sufficient. The total amount of N2O emissions under sealed conditions was 2.15±0.56mgNkg-1 waste, which was higher than that under open conditions (1.91±0.34mgNkg-1 waste). The NO2- peak appeared prior to the peak in N2O flux. The degree and duration of total nitrogen reduction in open incubations were larger and longer than those of sealed incubations and could possibly be due to oxygen supplementation. Denitrification (DF) was a major source of N2O generation during these incubations. The contribution of the DF pathway decreased from 89.2% to 61.3% during the open incubations. The effects of nitrification (NF) and nitrification-coupled denitrification (NCD) increased during the increasing phase and the decreasing phase of N2O flux, contributing 24.1-37.4% and 31.7-34.4% of total N2O emissions, respectively. In sealed treatments, the DF pathway accounted for more than 90% of the total N2O emission during the entire incubation.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Resíduos/análise , Desnitrificação , Nitrificação
20.
Ying Yong Sheng Tai Xue Bao ; 25(6): 1815-24, 2014 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-25223043

RESUMO

Nitrous oxide (N2O) is one of three major greenhouse gases and the dominant ozone-depleting substance. Landfilling is the major approach for the treatment and disposal of municipal solid waste (MSW), while MSW landfills can be an important anthropogenic source for N2O emissions. Measurements at lab-scale and full-scale landfills have demonstrated that N2O can be emitted in substantial amounts in MSW landfills; however, a large variation in reported emission values exists. Currently, the mechanisms of N2O production and emission in landfills and its contribution to global warming are still lack of sufficient studies. Meanwhile, obtaining reliable N2O fluxes data in landfills remains a question with existing in-situ measurement techniques. This paper summarized relevant literature data on this issue and analyzed the potential production and emission mechanisms of N2O in traditional anaerobic sanitary landfill by dividing it into the MSW buried and the cover soil. The corresponding mechanisms in nitrogen removal bioreactor landfills were analyzed. Finally, the applicability of existing in-situ approaches measuring N2O fluxes in landfills, such as chamber and micrometeorological methods, was discussed and areas in which further research concerning N2O emissions in landfills was urgently required were proposed as well.


Assuntos
Poluentes Atmosféricos/análise , Óxido Nitroso/análise , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Reatores Biológicos , Gases , Nitrogênio , Eliminação de Resíduos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...