Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(11): 5040-5052, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437076

RESUMO

To assess the ecological risk of microplastics (MPs) occurring in the surface water of terrestrial water systems across China, this study obtained relevant literature and data by searching keywords including microplastics, urban, and river on websites such as Science Direct and Web of Science. We constructed an evaluation method of ecological risk characterization ratio (RCR) based on chemical hazard data, as well as data of MPs abundance and polymer proportion originating in studies from 2017 to 2021 that covered 33 water bodies in 15 provinces. The results showed that the average abundance of MPs in natural water bodies in China reached (3604.2±5926.4) n·m-3, and the average abundance of MPs in urban water bodies was (7722.6±9505.7) n·m-3. The corresponding average RCR of natural water bodies was 22.09±45.2, and the average RCR of urban water bodies was 15.67±34.8. Therefore, according to the value of RCR, the ecological risk could be rated as four levels. Of these, no significant risk (RCR ≤ 1) was found in 17 water bodies, accounting for 42.5%; low ecological risks (RCR 1-10) were found in 12 water bodies (30%); medium ecological risks (RCR 10-100) were found in 9 water bodies (22.5%); and high ecological risks (RCR>100) were found in 2 water bodies (5%). Data analysis showed a significant correlation between MPs abundance and RCR values in natural water bodies (R2=0.875, P<0.01), though not in urban water bodies. This suggested that the high abundance of MPs could not precisely indicate a high degree of ecological risk in the area. In addition, RCR values were observed to be positively correlated with the watershed area (R2=0.864, P<0.01), and MPs abundance was correlated with GDP (R2=0.679, P<0.05) and watershed resident population (R2=0.922, P<0.05). This study provides baseline data for evaluating the ecological risk of MPs and a feasible method for evaluating the ecological risk of MPs in surface water of terrestrial water systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Água/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco , China
2.
Huan Jing Ke Xue ; 41(8): 3612-3620, 2020 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124334

RESUMO

Rivers have been a subject of great concern in recent years as they have been found to be the critical path for the transmission of microplastics from terrestrial land to the ocean. However, the pollution status of microplastics and their behavior in the surface waters and sediments of urban rivers located in different urban areas remain unclear. In this study, 16 samples of surface water and sediment from eight rivers in the central and suburban areas of Shanghai Megacity were obtained and analyzed. High-speed cameras and Fourier transform infrared spectrometers were used to identify the abundance, size, color, shape, type, and other characteristics of microplastics in these samples. The results showed that the average abundance of microplastics in the surface waters of urban rivers in Shanghai Megacity was (7.5±2.8) pieces·L-1, while the corresponding average abundance in the sediment reached (1575.5±758.4)pieces·kg-1 (wet weight). The abundance of microplastics was found to increase with the decreasing particle diameter. Among which, microplastics with a size of less than 500 µm, as well as the fibrous shape, transparent color, and Polyester composition, have always dominated in the urban rivers in Shanghai megacity. Comparably, microplastics in the sediments were more diverse in their morphology features and polymer compositions. Microplastic pollution in the urban rivers in Shanghai megacity was severe in comparison to that in other urban rivers worldwide. Among various urban rivers, the distribution of microplastics with different morphology features and polymer compositions is greatly influenced by a number of factors including the source (e.g., mainly laundry wastewater, personal care products, and refuse plastic waste), hydrodynamic conditions, and the physical and chemical properties of plastics. Furthermore, the pollution behavior (i.e., source, transmission, and fate) of microplastics occurring in urban rivers is discussed, and the potential impacts of various environmental factors are explained.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
3.
Huan Jing Ke Xue ; 41(5): 2272-2280, 2020 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608845

RESUMO

Stormwater runoff pollution occurring in urban areas can be a notable threat to the ecological environments of receiving water bodies. Dissolved organic matter (DOM) constitutes the primary type of pollutant in stormwater runoff, and tracking of its components and sources can provide valuable scientific bases for the future abatement of stormwater runoff pollution. In this study, aiming to demonstrate the characteristics and sources of the contained DOM in both pavement runoff (PR) and greenland runoff (GR), we applied ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to analyze the molecular chemo-diversity of their DOM, as well as Spearman rank correlations between the molecular chemo-diversity and water quality indicators including suspended solids (SS), total nitrogen (TN), dissolved organic carbon (DOC), and dissolved lead (Pb). The results show:① When the molecular accumulation reaches a saturated state, the cumulative number of molecules of PR-DOM (12498) is much larger than that of GR-DOM (7015). The molecular distribution of PR-DOM (150-750) is smaller yet more concentrated than that of GR-DOM (150-850). ② According to the molecular composition characterization and Spearman rank correlation analysis, the sources of the components of PR-DOM and GR-DOM are remarkably different. PR-DOM can be greatly influenced by human activities, and its primary element component (CHOS) contains a large number of substances that were recognized to be from the surfactant sulfonic acid. Additionally, the significant aliphatic components that emerged were from traffic pollution. In contrast, GR-DOM is less affected by human activities, and its primary element component (CHO) gives priority to natural organic matter (NOM). The most abundant substance component that occurred in GR-DOM, i.e., the highly unsaturated and phenolic compound that generally originates in the degraded humus, is initially formed by the plant residue and flushed by rainfall runoff.

4.
Huan Jing Ke Xue ; 41(7): 3392-3401, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608913

RESUMO

The increasing carbon emission of polluted rivers in urban areas is an environmental problem commonly faced by many cities in China, especially the megacities with vast populations. In this study, two typical rivers located in the megacity of Shanghai, including the suburban river network R1 and urban river R2 (in the central city), were investigated for their emission characteristics of CO2 and CH4 in dry and wet weather. We also analyzed the relationship between the state and type of river pollution and CO2 and CH4 emissions, and further explained the mechanisms of CO2 and CH4 emissions in urban rivers impacted by sewage discharged from the municipal drainage network. The results show that:① In dry weather, the average fluxes of CO2 and CH4 emitted from the river in the central city (R2) were (2.48±1.02) mmol·(m2·h)-1 and (1.21×10-2±0.71×10-2) mmol·(m2·h)-1, respectively. The average fluxes of CO2 and CH4 from the suburban river (R1) network were (1.53±0.39) mmol·(m2·h)-1 and (9.26×10-3±9.18×10-3) mmol·(m2·h)-1, respectively. In wet weather, affected by sewage from the municipal drainage network, CH4 flux emitted from the surface water of the R2 river downstream of the pump station P increased by up to 119 times that in dry weather. ② Global carbon emission statistics, involving the data from our study and from other rivers around the world, seemed to imply a relationship between the carbon emission flux and the pollution state of an urban river, i.e., the rivers with high pollution showed significant carbon emission intensity. ③ According to the results of PCA, organic matter can be an essential factor in driving the variation of carbon emissions, and this trend is evident in all the rivers in urban and suburban areas. The relationship between carbon emissions and nitrogen pollution in a river varies with different types of underlying riparian surface. In the less polluted urban rivers, the aquatic physical factor can also be an essential factor. ④ In the short term, with massive quantities of sewage discharged into urban rivers, a large amount of CH4 flux can be emitted. In contrast, in the long run, the carbon cycle can be strengthened when the carbon storage is increased, and thus the emission potential of CO2 and CH4 is improved.

5.
Huan Jing Ke Xue ; 40(9): 4105-4112, 2019 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854874

RESUMO

Wastewater treatment plants are important sources of microplastics (MPs) in aquatic environments. The present study was conducted to investigate the number concentration, removal rate, and fate of MPs in two large municipal treatment plants in Shanghai. The MPs number concentration in the influent water of WWTP1 and WWTP2 were (226.27±83.00) piece·L-1 and (171.89±62.98) piece·L-1, respectively. WWTP1 had a MPs removal efficiency of 63.25%, which is slightly higher than that of WWTP2, at 59.84%. The removal efficiency during the primary treatment process of the two sewage treatment plants on MPs accounted for 70%-80% of the whole treatment process. The primary treatment process and secondary treatment process transferred (48.10%±1.62%) and (12.97%±0.05%) of MPs in the sewage to the sludge, respectively. As a whole, (38.82%±1.55%) of MPs in the sewage treatment plants were finally discharged into natural waters, and the remaining (61.18%±1.55%) entered the sludge. This study shows that the removal rate of MPs in Shanghai's municipal treatment plants is low and that after treatment, large amounts still enter the natural waters with the final effluent, which causes significant ecological risks. This study provides basic data of MPs removal and trends of large urban sewage treatment plants in a plain river network area, which can provide reference for further design of MPs removal processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...