Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19103-19111, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578811

RESUMO

The coexistence of nonvolatile and volatile switching modes in a single memristive device provides flexibility to emulate both neuronal and synaptic functions in the brain. Furthermore, such a device structure may eliminate the need for additional circuit elements such as transistor-based selectors, enabling low-power consumption and high-density device integration in fully memristive spiking neural networks. In this work, we report dual resistive switching (RS) modes in VO2/La0.7Sr0.3MnO3 (LSMO) bilayer memristive devices. Specifically, the nonvolatile RS is driven by the movement of oxygen vacancies (Vo) at the VO2/LSMO interface and requires a higher biasing voltage, whereas the volatile RS is controlled by the metal-insulator transition (MIT) of VO2 under a lower biasing voltage. The simple device structure is electrically driven between the two RS modes and thus can operate as a one selector-one resistor (1S1R) cell, which is a desirable feature in memristive crossbar arrays to avoid the sneak-path current issue. The RS modes are found to be stable and repeatable and can be reconfigured by exploiting the interfacial and phase transition properties, and thus, they hold great promise for applications in memristive neural networks and neuromorphic computing.

2.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068212

RESUMO

We report a milestone in achieving large-scale, ultrathin (~5 nm) superconducting NbN thin films on 300 mm Si wafers using a high-volume manufacturing (HVM) industrial physical vapor deposition (PVD) system. The NbN thin films possess remarkable structural uniformity and consistently high superconducting quality across the entire 300 mm Si wafer, by incorporating an AlN buffer layer. High-resolution X-ray diffraction and transmission electron microscopy analyses unveiled enhanced crystallinity of (111)-oriented δ-phase NbN with the AlN buffer layer. Notably, NbN films deposited on AlN-buffered Si substrates exhibited a significantly elevated superconducting critical temperature (~2 K higher for the 10 nm NbN) and a higher upper critical magnetic field or Hc2 (34.06 T boost in Hc2 for the 50 nm NbN) in comparison with those without AlN. These findings present a promising pathway for the integration of quantum-grade superconducting NbN films with the existing 300 mm CMOS Si platform for quantum information applications.

3.
Nanoscale ; 15(43): 17589-17598, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873761

RESUMO

Topologically protected non-trivial spin textures (e.g. skyrmions) give rise to a novel phenomenon called the topological Hall effect (THE) and have promising implications in future energy-efficient nanoelectronic and spintronic devices. Here, we have studied the Hall effect in SrRuO3/La0.42Ca0.58MnO3 (SRO/LCMO) bilayers. Our investigation suggests that pure SRO has hard and soft magnetic characteristics but the anomalous Hall effect (AHE) in SRO is governed by the high coercivity phase. We have shown that the proximity effect of a soft magnetic LCMO on SRO plays a critical role in interfacial magnetic coupling and transport properties in SRO. Upon reducing the SRO thickness in the bilayer, the proximity effect becomes the dominant feature, enhancing the magnitude and temperature range of THE-like signatures. The THE-like features in bilayers can be explained by a diffusive Berry phase transition model in the presence of an emergent magnetic state due to interface coupling. This work provides an alternative understanding of THE-like signatures and their manipulation in SRO-based heterostructures, bilayers and superlattices.

4.
Nano Lett ; 23(21): 9711-9718, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37875263

RESUMO

Filamentary-type resistive switching devices, such as conductive bridge random-access memory and valence change memory, have diverse applications in memory and neuromorphic computing. However, the randomness in filament formation poses challenges to device reliability and uniformity. To overcome this issue, various defect engineering methods have been explored, including doping, metal nanoparticle embedding, and extended defect utilization. In this study, we present a simple and effective approach using self-assembled uniform Au nanoelectrodes to controll filament formation in HfO2 resistive switching devices. By concentrating the electric field near the Au nanoelectrodes within the BaTiO3 matrix, we significantly enhanced the device stability and reduced the threshold voltage by up to 45% in HfO2-based artificial neurons compared to the control devices. The threshold voltage reduction is attributed to the uniformly distributed Au nanoelectrodes in the insulating matrix, as confirmed by COMSOL simulation. Our findings highlight the potential of nanostructure design for precise control of filamentary-type resistive switching devices.

5.
Materials (Basel) ; 16(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37895653

RESUMO

As the energy demand is expected to double over the next 30 years, there has been a major initiative towards advancing the technology of both energy harvesting and storage for renewable energy. In this work, we explore a subset class of dielectrics for energy storage since ferroelectrics offer a unique combination of characteristics needed for energy storage devices. We investigate ferroelectric lead-free 0.5[Ba(Ti0.8Zr0.2)O3]-0.5(Ba0.7Ca0.3)TiO3 epitaxial thin films with different crystallographic orientations grown by pulsed laser deposition. We focus our attention on the influence of the crystallographic orientation on the microstructure, ferroelectric, and dielectric properties. Our results indicate an enhancement of the polarization and strong anisotropy in the dielectric response for the (001)-oriented film. The enhanced ferroelectric, energy storage, and dielectric properties of the (001)-oriented film is explained by the coexistence of orthorhombic-tetragonal phase, where the disordered local structure is in its free energy minimum.

6.
Sci Adv ; 9(25): eadg1946, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343094

RESUMO

A design concept of phase-separated amorphous nanocomposite thin films is presented that realizes interfacial resistive switching (RS) in hafnium oxide-based devices. The films are formed by incorporating an average of 7% Ba into hafnium oxide during pulsed laser deposition at temperatures ≤400°C. The added Ba prevents the films from crystallizing and leads to ∼20-nm-thin films consisting of an amorphous HfOx host matrix interspersed with ∼2-nm-wide, ∼5-to-10-nm-pitch Ba-rich amorphous nanocolumns penetrating approximately two-thirds through the films. This restricts the RS to an interfacial Schottky-like energy barrier whose magnitude is tuned by ionic migration under an applied electric field. Resulting devices achieve stable cycle-to-cycle, device-to-device, and sample-to-sample reproducibility with a measured switching endurance of ≥104 cycles for a memory window ≥10 at switching voltages of ±2 V. Each device can be set to multiple intermediate resistance states, which enables synaptic spike-timing-dependent plasticity. The presented concept unlocks additional design variables for RS devices.

7.
Nat Commun ; 14(1): 3638, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336926

RESUMO

Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO6 octahedral rotations throughout LaCoO3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3d-O 2p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO3 films while suggesting potential applications toward low-power spintronic devices.

8.
Nano Lett ; 23(11): 4807-4814, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37224193

RESUMO

Heterogeneities in structure and polarization have been employed to enhance the energy storage properties of ferroelectric films. The presence of nonpolar phases, however, weakens the net polarization. Here, we achieve a slush-like polar state with fine domains of different ferroelectric polar phases by narrowing the large combinatorial space of likely candidates using machine learning methods. The formation of the slush-like polar state at the nanoscale in cation-doped BaTiO3 films is simulated by phase field simulation and confirmed by aberration-corrected scanning transmission electron microscopy. The large polarization and the delayed polarization saturation lead to greatly enhanced energy density of 80 J/cm3 and transfer efficiency of 85% over a wide temperature range. Such a data-driven design recipe for a slush-like polar state is generally applicable to quickly optimize functionalities of ferroelectric materials.

9.
Adv Sci (Weinh) ; 10(15): e2207481, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37012611

RESUMO

Transition metal oxides exhibit a plethora of electrical and magnetic properties described by their order parameters. In particular, ferroic orderings offer access to a rich spectrum of fundamental physics phenomena, in addition to a range of technological applications. The heterogeneous integration of ferroelectric and ferromagnetic materials is a fruitful way to design multiferroic oxides. The realization of freestanding heterogeneous membranes of multiferroic oxides is highly desirable. In this study, epitaxial BaTiO3 /La0.7 Sr0.3 MnO3 freestanding bilayer membranes are fabricated using pulsed laser epitaxy. The membrane displays ferroelectricity and ferromagnetism above room temperature accompanying the finite magnetoelectric coupling constant. This study reveals that a freestanding heterostructure can be used to manipulate the structural and emergent properties of the membrane. In the absence of the strain caused by the substrate, the change in orbital occupancy of the magnetic layer leads to the reorientation of the magnetic easy-axis, that is, perpendicular magnetic anisotropy. These results of designing multiferroic oxide membranes open new avenues to integrate such flexible membranes for electronic applications.

10.
Adv Sci (Weinh) ; 9(33): e2203473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209382

RESUMO

Actinide materials have various applications that range from nuclear energy to quantum computing. Most current efforts have focused on bulk actinide materials. Tuning functional properties by using strain engineering in epitaxial thin films is largely lacking. Using uranium dioxide (UO2 ) as a model system, in this work, the authors explore strain engineering in actinide epitaxial thin films and investigate the origin of induced ferromagnetism in an antiferromagnet UO2 . It is found that UO2+ x thin films are hypostoichiometric (x<0) with in-plane tensile strain, while they are hyperstoichiometric (x>0) with in-plane compressive strain. Different from strain engineering in non-actinide oxide thin films, the epitaxial strain in UO2 is accommodated by point defects such as vacancies and interstitials due to the low formation energy. Both epitaxial strain and strain relaxation induced point defects such as oxygen/uranium vacancies and oxygen/uranium interstitials can distort magnetic structure and result in magnetic moments. This work reveals the correlation among strain, point defects and ferromagnetism in strain engineered UO2+ x thin films and the results offer new opportunities to understand the influence of coupled order parameters on the emergent properties of many other actinide thin films.

11.
ACS Appl Mater Interfaces ; 14(31): 35673-35681, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913052

RESUMO

As an inexpensive and naturally abundant two-dimensional (2D) material, molybdenum disulfide (MoS2) exhibits a high Li-ion storage capacity along with a low volume expansion upon lithiation, rendering it an alternative anode material for lithium-ion batteries (LIBs). However, the challenge of using MoS2-based anodes is their intrinsically low electrical conductivity and unsatisfied cycle stability. To address the above issues, we have exploited a wet chemical technique and integrated MoS2 with highly conductive titanium carbide (Ti3C2) MXene to form a 2D nanohybrid. The binary hybrids were then subjected to an n-butyllithium (n-Buli) treatment to induce both MoS2 deep phase transition and MXene surface functionality modulation simultaneously. We observed a substantial increase in 1T-phase MoS2 content and a clear suppression of -F-containing functional groups in MXene due to the prelithiation process enabled by the n-Buli treatment. Such an approach not only increases the overall network conductivity but also improves Li-ion diffusion kinetics. As a result, the MoS2/Ti3C2 composite with n-Buli treatment delivered a high Li-ion storage capacity (540 mA h g-1 at 100 mA g-1), outstanding cycle stability (up to 300 cycles), and excellent rate capability. This work provides an effective strategy for the structure-property engineering of 2D materials and sheds light on the rational design of high-performance LIBs using 2D-based anode materials.

12.
Adv Sci (Weinh) ; 9(29): e2202671, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026570

RESUMO

Mixtures of Ce-doped rare-earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A-site cations with an equiatomic ratio allows for the stabilization of a single-crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare-earth aluminum perovskite oxide (La0.2 Lu0.2 Y0.2 Gd0.2 Ce0.2 )AlO3 and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+ and energy transfer to Ce3+ with 405 nm emission are observed, which represents the potential for high-energy conversion. These experimental results also offer the pathway to tunable optical properties of high-entropy rare-earth epitaxial perovskite films for a range of applications.

13.
J Phys Condens Matter ; 34(37)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35779516

RESUMO

Superconducting niobium nitride (NbN) continues to be investigated decades on, largely in part to its advantageous superconducting properties and wide use in superconducting electronics. Particularly, NbN-based superconducting nanowire single-photon detectors (SNSPDs) have shown exceptional performance and NbN remains as the material of choice in developing future generation quantum devices. In this perspective, we describe the processing-structure-property relationships governing the superconducting properties of NbN films. We further discuss the complex interplay between the material properties, processing parameters, substrate materials, device architectures, and performance of SNSPDs. We also highlight the latest progress in optimizing SNSPD performance parameters.

14.
Nanomaterials (Basel) ; 12(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269323

RESUMO

Perovskite offers a framework that boasts various functionalities and physical properties of interest such as ferroelectricity, magnetic orderings, multiferroicity, superconductivity, semiconductor, and optoelectronic properties owing to their rich compositional diversity. These properties are also uniquely tied to their crystal distortion which is directly affected by lattice strain. Therefore, many important properties of perovskite can be further tuned through strain engineering which can be accomplished by chemical doping or simply element substitution, interface engineering in epitaxial thin films, and special architectures such as nanocomposites. In this review, we focus on and highlight the structure-property relationships of perovskite metal oxide films and elucidate the principles to manipulate the functionalities through different modalities of strain engineering approaches.

15.
Nanotechnology ; 33(40)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313284

RESUMO

Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D-sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D-sNC with CoFe2O4(CFO) short nanopillar arrays embedded in BaTiO3(BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure engineering method allows encapsulating the relative conducting CFO phase by the insulating BTO phase, which suppress the leakage current and enhance the polarization. Our results demonstrate that microstructure engineering in 3D-sNC offers a new bottom-up method of fabricating advanced nanostructures with a wide range of possible configurations for applications where the functional properties need to be systematically modified.

16.
Natl Sci Rev ; 8(9): nwaa288, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691729

RESUMO

Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties. Addressing their relationships is considerably challenging due to the scarcity of effective diagnostic tools during structural and property tuning as well as the limited tunability achievable by conventional methods. Here, using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength (>180 nm/GPa) in the highly distorted halide perovskites [CH3NH3GeI3, HC(NH2)2GeI3, and CsGeI3]. Using advanced in situ high-pressure probes and first-principles calculations, we quantitatively reveal a universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by substituting CH3NH3 + with Cs+ to control the distortion in (CH3NH3)1-xCsxGeI3, where the chemical substitution plays a similar role as external pressure. The compression of a fully substituted sample of CsGeI3 further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a 10-fold enhancement. This work not only demonstrates a quantitative relationship between structural distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from high-pressure research to achieve the desired properties by ambient methods.

17.
Nat Commun ; 12(1): 4602, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326334

RESUMO

The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm-1. The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics.

18.
Angew Chem Int Ed Engl ; 60(5): 2629-2636, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33047467

RESUMO

It is extremely challenging to grow single-crystal halide perovskite films (SCHPFs) with not only desired transport properties but also large lateral size with much thinner thickness. Here, we report the growth of freestanding single crystal CsPbBr3 SCHPFs with thickness less than 100 nm and a lateral size close to centimeter for the first time. A new model for growth kinetics (Ψ=Aexp[-(EA -Es )/(kB T)]) is proposed to address the surface energy and temperature effect on the growth rate of ultrathin CsPbBr3 single-crystal film. The experimental results and DFT calculations both demonstrated that the surfactant plays a critical role in modifying the surface energy and achieving anisotropic growth. This work opens new opportunities for high-quality SCHPFs with large lateral size and controllable thickness that may find wide applications for optoelectronic devices.

19.
Nanoscale ; 12(35): 18193-18199, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32856672

RESUMO

Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.

20.
ACS Omega ; 5(30): 18579-18583, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775859

RESUMO

BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, nontoxicity with earth-abundant elements, it is thus a promising candidate for thin film solar cells. However, its reported band gap in the range of 1.7-1.8 eV is larger than the optimal value required to reach the Shockley-Queisser limit of a single-junction solar cell. Here, we report the synthesis of Ba(Zr1-x Ti x )S3 perovskite compounds with a reduced band gap. It is found that Ti-alloying is extremely effective in band gap reduction of BaZrS3: a mere 4 atom % alloying decreases the band gap from 1.78 to 1.51 eV, resulting in a theoretical maximum power conversion efficiency of 32%. Higher Ti-alloying concentration is found to destabilize the distorted chalcogenide perovskite phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...