Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591483

RESUMO

Developing new soft magnetic amorphous alloys with a low cost and high saturation magnetization (Bs) in a simple alloy system has attracted substantial attention for industrialization and commercialization. Herein, the glass-forming ability (GFA), thermodynamic properties, soft magnetic properties, and atomic structures of Fe80+xSi5-xB15 (x = 0-4) amorphous soft magnetic alloys were investigated by ab initio molecular dynamics (AIMD) simulations and experiments. The pair distribution function (PDF), Voronoi polyhedron (VP), coordination number (CN), and chemical short- range order (CSRO) were analyzed based on the AIMD simulations for elucidating the correlations between the atomic structures with the glass-forming ability and magnetic properties. For the studied compositions, the Fe82Si3B15 amorphous alloy was found to exhibit the strongest solute-solute avoidance effect, the longest Fe-Fe bond, a relatively high partial CN for the Fe-Fe pair, and the most pronounced tendency to form more stable clusters. The simulation results indicated that Fe82Si3B15 was the optimum composition balancing the saturation magnetization and the GFA. This prediction was confirmed by experimental observations. The presented work provides a reference for synthesizing new Fe-Si-B magnetic amorphous alloys.

2.
Phys Chem Chem Phys ; 23(42): 24239-24248, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668917

RESUMO

Single-walled carbon nanotubes (SWCNTs) have evoked great interest for various luminescent applications, but the large emission heterogeneity resulting from the structural complexity of the samples seriously restricts their further development. Herein we theoretically explore the electronic structures and optical properties of phenine nanotubes (pNTs), which are typical luminescent SWCNT derivatives with determined molecular structures that have been synthesized recently (Z. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato and H. Isobe, Science, 2019, 363, 151-155; K. Ikemoto, S. Yang, H. Naito, M. Kotani, S. Sato and H. Isobe, Nat. Commun., 2020, 11, 1807). Interestingly, pNTs are found to feature different semiconducting properties to SWCNTs, as indicated by a spatial separation trend in the HOMO and LUMO resulting from periodic structural vacancies. The HOMO-LUMO and optical gaps of pNTs depend inversely on their lengths and diameters, but diameter variation should be an ineffective method for property tuning due to its negligible influence. By contrast, chemical modifications via N doping or hydrogenation highly affect the HOMO-LUMO gaps and their distributions and greatly broaden the light absorption/emission range, and importantly, low-dose hydrogenation is predicted to be a feasible strategy to enhance luminescence. This work, by studying the fundamental photophysical properties of pNTs and making comparisons to SWCNTs, shows the promise of structural vacancy engineering and surface functionalization in acquiring multifunctional tube-like materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...