Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36016072

RESUMO

In seismic assessment of continuous girder bridges, plastic hinges form in bridge piers to dissipate seismic energy through nonlinear restoring forces. Considering temporal and spatial variations of ground motions, seismic evaluation of the bridges involves nonlinear stochastic vibration and expensive computation. This paper presents an approach to significantly increase the efficiency of seismic evaluation for continuous girder bridges with plastic hinges. The proposed approach converts nonlinear motion equations into quasi-linear state equations, solves the equations using an explicit time-domain dimension-reduced iterative method, and incorporates a stochastic sampling method to statistically analyze the seismic response of bridges under earthquake excitation. Taking a 3 × 30 m continuous girder bridge as an example, fiber beam-column elements are used to simulate the elastic-plastic components of the continuous girder bridge, and the elastic-plastic time history analysis of the continuous girder bridge under non-uniform seismic excitation is carried out. Results show that the computation time is only 5% of the time of the nonlinear time history approach while retaining the accuracy. This study advances the capability of rapid seismic assessment and design for bridges with localized nonlinear behaviors such as plastic hinges.

2.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746111

RESUMO

Curved pedestrian bridges are important urban infrastructure with the desired adaptability to the landscape constraints and with aesthetic benefits. Pedestrian bridges feature thin cross-sections, which provide sufficient load capacities but lead to low natural frequencies that make the bridges susceptible to vibration under pedestrian excitation. This study investigates the lateral vibration of a curved bridge with a small radius down to 20 m, proposes an approach to mitigate the lateral vibration of bridges with large curvatures using distributed multiple tuned mass dampers (MTMD), and conducts in-situ bridge tests to evaluate the vibration mitigation performance. The lateral vibration was investigated through in-situ tests and finite element analysis as well as the code requirements. The key parameters of the distributed MTMD system were improved by strategically selecting the mass ratio, bandwidth, center frequency ratio, and damper number. The results showed that the curved bridge was subjected to significant lateral vibration due to the coupling of torque and moment, and the recommended design parameters for the studied bridge were derived, i.e., the total mass ratio is 0.02, bandwidth is 0.15, center frequency ratio is 1.0, and damper number is 3. The proposed approach effectively improves the deployment of MTMD for lateral vibration control of the curved bridge. The field tests showed that the vibration was reduced by up to 82% by using the proposed approach.


Assuntos
Pedestres , Vibração , Análise de Elementos Finitos , Humanos , Rádio (Anatomia) , Aço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...