Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004852

RESUMO

With the development and popularization of the Beidou-3 navigation satellite system (BDS-3), to ensure its unique short message function, it is necessary to integrate a radio frequency (RF) transmitting circuit with high performance in the BDS-3 terminal. As the key device in an RF transmitting circuit, the RF power amplifier (PA) largely determines the comprehensive performance of the circuit with its transmission power, efficiency, linearity, and integration. Therefore, in this paper, an L-band highly integrated PA chip compatible with 3 W and 5 W output power is designed in InGaP/GaAs heterojunction bipolar transistor (HBT) technology combined with temperature-insensitive adaptive bias technology, class-F harmonic suppression technology, analog pre-distortion technology, temperature-insensitive adaptive power detection technology, and land grid array (LGA) packaging technology. Additionally, three auxiliary platforms are proposed, dedicated to the simulation and optimization of the same type of PA designs. The simulation results show that at the supply voltage of 5 V and 3.5 V, the linear gain of the PA chip reaches 39.4 dB and 38.7 dB, respectively; the output power at 1 dB compression point (P1dB) reaches 37.5 dBm and 35.1 dBm, respectively; the saturated output power (Psat) reaches 38.2 dBm and 36.2 dBm, respectively; the power added efficiency (PAE) reaches 51.7% and 48.2%, respectively; and the higher harmonic suppression ratios are less than -62 dBc and -65 dBc, respectively. The size of the PA chip is only 6 × 4 × 1 mm3. The results also show that the PA chip has high gain, high efficiency, and high linearity under both output power conditions, which has obvious advantages over similar PA chip designs and can meet the short message function of the BDS-3 terminal in various application scenarios.

2.
Inflamm Res ; 72(9): 1895-1907, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37688642

RESUMO

Perioperative neurocognitive disorder (PND) is a common disorder following anesthesia and surgery, especially in the elderly. The complex cellular and molecular processes are involved in PND, but the underlying pathogenesis of which remains inconclusive due to conflicting data. A growing body of evidence has been shown that perioperative systemic inflammation plays important roles in the development of PND. We reviewed the relevant literature retrieved by a search in the PubMed database (on July 20, 2023). The search terms used were "delirium", "post operative cognitive dysfunction", "perioperative neurocognitive disorder", "inflammation" and "systemic", alone and in combination. All articles identified were English-language, full-text papers. The ones cited in the review are those that make a substantial contribution to the knowledge about systemic inflammation and PNDs. The aim of this review is to bring together the latest evidence for the understanding of how perioperative systemic inflammation mediates neuroinflammation and brain injury, how the inflammation is regulated and how we can translate these findings into prevention and/or treatment for PND.


Assuntos
Transtornos Neurocognitivos , Doenças Neuroinflamatórias , Humanos , Idoso , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/patologia , Transtornos Neurocognitivos/prevenção & controle , Inflamação/prevenção & controle
3.
Life Sci ; 332: 122130, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769809

RESUMO

Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.

4.
Front Neurosci ; 17: 1176654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250405

RESUMO

Introduction: Clinical studies have revealed the existence of circadian rhythms in pain intensity and treatment response for chronic pain, including orofacial pain. The circadian clock genes in the peripheral ganglia are involved in pain information transmission by modulating the synthesis of pain mediators. However, the expression and distribution of clock genes and pain-related genes in different cell types within the trigeminal ganglion, the primary station of orofacial sensory transmission, are not yet fully understood. Methods: In this study, data from the normal trigeminal ganglion in the Gene Expression Omnibus (GEO) database were used to identify cell types and neuron subtypes within the human and mouse trigeminal ganglion by single nucleus RNA sequencing analysis. In the subsequent analyses, the distribution of the core clock genes, pain-related genes, and melatonin and opioid-related genes was assessed in various cell clusters and neuron subtypes within the human and mouse trigeminal ganglion. Furthermore, the statistical analysis was used to compare the differences in the expression of pain-related genes in the neuron subtypes of trigeminal ganglion. Results: The present study provides comprehensive transcriptional profiles of core clock genes, pain-related genes, melatonin-related genes, and opioid-related genes in different cell types and neuron subtypes within the mouse and human trigeminal ganglion. A comparative analysis of the distribution and expression of the aforementioned genes was conducted between human and mouse trigeminal ganglion to investigate species differences. Discussion: Overall, the results of this study serve as a primary and valuable resource for exploring the molecular mechanisms underlying oral facial pain and pain rhythms.

5.
J Pineal Res ; 74(4): e12865, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36864655

RESUMO

Tooth development is a complex process that is tightly controlled by circadian rhythm. Melatonin (MT) is a major hormonal regulator of the circadian rhythm, and influences dentin formation and odontoblastic differentiation during tooth development; however, the underlying mechanism remains elusive. This study investigated how MT regulates odontoblastic differentiation, with a special focus on its regulation of mitochondrial dynamics. In rat dental papilla cells (DPCs), we found that MT promotes odontoblastic differentiation concurrently with enhanced mitochondrial fusion, while disruption of mitochondrial fusion by depleting optic atrophy 1 (OPA1) impairs MT-mediated differentiation and mitochondrial respiratory functions. Through RNA sequencing, we discovered that MT significantly upregulated malic enzyme 2 (ME2), a mitochondrial NAD(P)+ -dependent enzyme, and identified ME2 as a critical MT downstream effector that orchestrates odontoblastic differentiation, mitochondrial fusion, and respiration functions. By detecting the spatiotemporal expression of ME2 in developing tooth germs, and using tooth germ reconstituted organoids, we also provided in vivo and ex vivo evidence that ME2 promotes dentin formation, indicating a possible involvement of ME2 in MT-modulated tooth development. Collectively, our findings offer novel understandings regarding the molecular mechanism by which MT affects cell differentiation and organogenesis, meanwhile, the critical role of ME2 in MT-regulated mitochondrial functions is also highlighted.


Assuntos
Melatonina , Animais , Ratos , Diferenciação Celular , Polpa Dentária , Melatonina/metabolismo , Dinâmica Mitocondrial , Odontoblastos/metabolismo , Respiração , Malato Desidrogenase/metabolismo
6.
Front Mol Neurosci ; 16: 1117065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818656

RESUMO

Satellite glial cells (SGCs) play an important role in regulating the function of trigeminal ganglion (TG) neurons. Multiple mediators are involved in the bidirectional communication between SGCs and neurons in different physiological and pathological states. However, molecular insights into the transcript characteristics of SGCs are limited. Moreover, little is known about the heterogeneity of SGCs in TG, and a more in-depth understanding of the interactions between SGCs and neuron subtypes is needed. Here we show the single-cell RNA sequencing (scRNA-seq) profile of SGCs in TG under physiological conditions. Our results demonstrate TG includes nine types of cell clusters, such as neurons, SGCs, myeloid Schwann cells (mSCs), non-myeloid Schwann cells (nmSCs), immune cells, etc., and the corresponding markers are also presented. We reveal the signature gene expression of SGCs, mSCs and nmSCs in the TG, and analyze the ligand-receptor pairs between neuron subtypes and SGCs in the TG. In the heterogeneity analysis of SGCs, four SGCs subtypes are identified, including subtypes enriched for genes associated with extracellular matrix organization, immediate early genes, interferon beta, and cell adhesion molecules, respectively. Our data suggest the molecular characteristics, heterogeneity of SGCs, and bidirectional interactions between SGCs and neurons, providing a valuable resource for studying SGCs in the TG.

7.
Cell Mol Neurobiol ; 43(2): 511-523, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179680

RESUMO

The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.


Assuntos
Relógios Circadianos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia
8.
J Inflamm Res ; 15: 6263-6274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386581

RESUMO

Background: The sympathetic nervous system (SNS) is suggested to be involved in some forms of pain, but the mechanisms of which are incompletely known. Moreover, there is a lack of information on the regulatory role of the SNS on macrophages in sensory ganglion, which plays an important role in pain development. The present study aims to investigate the effects of the SNS on orofacial inflammatory pain and examine, if any, how the SNS influences trigeminal ganglion (TG) macrophage responses. Methods: Sympathectomy was performed on male C57BL/6 mice before receiving a local injection of Complete Freund's adjuvant (CFA) to induce inflammatory pain. Effects of sympathectomy on orofacial pain were examined by Von Frey test and c-Fos expression. Polarization of TG macrophage was evaluated by immunohistochemistry and the level of norepinephrine (NE) in the TG were determined by liquid chromatography. Sympathetic signaling to TG macrophages were predicted based on single-cell analysis. Results: CFA injection induced a significant increase in mechanical allodynia, the number of c-Fos-positive neuron, and the level of NE in TG, which were largely reduced by sympathectomy. The number of M1 macrophages was markedly increased by CFA and was largely reduced by sympathectomy from 1 to 14 days post-injection. Single-cell RNA sequencing analysis and immunofluorescence staining showed that TG macrophages mainly express ß2 adrenergic receptors for NE. Cell-cell communication analysis predicted sympathetic signaling that may modulate macrophage phenotypes, including Colony-stimulating factor-1, Migration inhibitory factor, Pleiotrophin and Nicotinamide phosphoribosyl transferase. Conclusion: The SNS may involve in CFA-induced mechanical allodynia via modulating macrophage phenotypes in the TG. Targeting sympathetic activation might be useful in treating some painful conditions in the orofacial region.

9.
Front Neurosci ; 16: 929136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440288

RESUMO

Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.

10.
Front Mol Neurosci ; 15: 1038539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311028

RESUMO

Trigeminal ganglion (TG) is the first station of sensory pathways in the orofacial region. The TG neurons communicate with satellite glial cells (SGCs), macrophages and other cells forming a functional unit that is responsible for processing of orofacial sensory information. Purinergic signaling, one of the most widespread autocrine and paracrine pathways, plays a crucial role in intercellular communication. The multidirectional action of purinergic signaling in different cell types contributes to the neuromodulation and orofacial sensation. To fully understand the purinergic signaling in these processes, it is essential to determine the shared and unique expression patterns of genes associated with purinergic signaling in different cell types. Here, we performed single-cell RNA sequencing of 22,969 cells isolated from normal mouse TGs. We identified 18 distinct cell populations, including 6 neuron subpopulations, 3 glial subpopulations, 7 immune cell subpopulations, fibroblasts, and endothelial cells. We also revealed the transcriptional features of genes associated with purinergic signaling, including purinergic receptors, extracellular adenosine triphosphate (eATP) release channels, eATP metabolism-associated enzymes, and eATP transporters in each cell type. Our results have important implications for understanding and predicting the cell type-specific roles of the purinergic signaling in orofacial signal processing in the trigeminal primary sensory system.

11.
Front Cell Neurosci ; 16: 885569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722619

RESUMO

Orofacial inflammation leads to transcriptional alterations in trigeminal ganglion (TG) neurons. However, diverse alterations and regulatory mechanisms following orofacial inflammatory pain in different types of TG neurons remain unclear. Here, orofacial inflammation was induced by injection of complete Freund's adjuvant (CFA) in mice. After 7 days, we performed single-cell RNA-sequencing on TG cells of mice from control and treatment groups. We identified primary sensory neurons, Schwann cells, satellite glial cells, oligodendrocyte-like cells, immune cells, fibroblasts, and endothelial cells in TG tissue. After principal component analysis and hierarchical clustering, we identified six TG neuronal subpopulations: peptidergic nociceptors (PEP1 and PEP2), non-peptidergic nociceptors (NP1 and NP2), C-fiber low-threshold mechanoreceptors (cLTMR) and myelinated neurons (Nefh-positive neurons, NF) based on annotated marker gene expression. We also performed differential gene expression analysis among TG neuronal subtypes, identifying several differential genes involved in the inflammatory response, neuronal excitability, neuroprotection, and metabolic processes. Notably, we identified several potential novel targets associated with pain modulation, including Arl6ip1, Gsk3b, Scn7a, and Zbtb20 in PEP1, Rgs7bp in PEP2, and Bhlha9 in cLTMR. The established protein-protein interaction network identified some hub genes, implying their critical involvement in regulating orofacial inflammatory pain. Our study revealed the heterogeneity of TG neurons and their diverse neuronal transcriptomic responses to orofacial inflammation, providing a basis for the development of therapeutic strategies for orofacial inflammatory pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...