Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Acta Histochem ; 126(4): 152169, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850586

RESUMO

Alveolar, the smallest structural and functional units within the respiratory system, play a crucial role in maintaining lung function. Alveolar damage is a typical pathological hallmark of respiratory diseases. Nevertheless, there is currently no simple, rapid, economical, and unbiased method for quantifying alveolar size for entire lung tissue. Here, firstly, we conducted lung sample slicing based on the size, shape, and distribution of airway branches of different lobes. Next, we performed HE staining on different slices. Then, we provided an unbiased quantification of alveolar size using free software ImageJ. Through this protocol, we demonstrated that C57Bl/6 mice exhibit varying alveolar sizes among different lobes. Collectively, we provided a simple and unbiased method for a more comprehensive quantification of alveolar size in mice, which holds promise for a broader range of respiratory research using mouse models.

2.
JAMA Oncol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869865

RESUMO

Importance: Uninterrupted targeted therapy until disease progression or intolerable toxic effects is currently the routine therapy for advanced non-small cell lung cancer (NSCLC) involving driver gene variations. However, drug resistance is inevitable. Objective: To assess the clinical feasibility of adaptive de-escalation tyrosine kinase inhibitor (TKI) treatment guided by circulating tumor DNA (ctDNA) for achieving complete remission after local consolidative therapy (LCT) in patients with advanced NSCLC. Design, Setting, and Participants: This prospective nonrandomized trial was conducted at a single center from June 3, 2020, to July 19, 2022, and included 60 patients with advanced NSCLC with driver variations without radiologically detectable disease after TKI and LCT. The median (range) follow-up time was 19.2 (3.8-29.7) months. Data analysis was conducted from December 15, 2022, to May 10, 2023. Intervention: Cessation of TKI treatment and follow-up every 3 months. Treatment was restarted in patients with progressive disease (defined by the Response Evaluation Criteria in Solid Tumors 1.1 criteria), detectable ctDNA, or elevated carcinoembryonic antigen (CEA) levels, whichever manifested first, and treatment ceased if all indicators were negative during follow-up surveillance. Main Outcomes and Measures: Progression-free survival (PFS). Secondary end points were objective response rate, time to next treatment, and overall survival. Results: Among the total study sample of 60 participants (median [range] age, 55 [21-75] years; 33 [55%] were female), the median PFS was 18.4 (95% CI, 12.6-24.2) months and the median (range) total treatment break duration was 9.1 (1.5-28.1) months. Fourteen patients (group A) remained in TKI cessation with a median (range) treatment break duration of 20.3 (6.8-28.1) months; 31 patients (group B) received retreatment owing to detectable ctDNA and/or CEA and had a median PFS of 20.2 (95% CI, 12.9-27.4) months with a median (range) total treatment break duration of 8.8 (1.5-20.6) months; and 15 patients (group C) who underwent retreatment with TKIs due to progressive disease had a median PFS of 5.5 (95% CI, 1.5-7.2) months. For all participants, the TKI retreatment response rate was 96%, the median time to next treatment was 29.3 (95% CI, 25.3-35.2) months, and the data for overall survival were immature. Conclusions and Relevance: The findings of this nonrandomized trial suggest that this adaptive de-escalation TKI strategy for patients with NSCLC is feasible in those with no lesions after LCT and a negative ctDNA test result. This might provide a de-escalation treatment strategy guided by ctDNA for the subset of patients with advanced NSCLC. Trial Registration: ClinicalTrials.gov Identifier: NCT03046316.

3.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741159

RESUMO

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


Assuntos
Quadruplex G , Mitocôndrias , Quadruplex G/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Genoma Mitocondrial , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Platina/farmacologia , Animais
4.
Front Plant Sci ; 15: 1393663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817934

RESUMO

Cabomba caroliniana A. Gray, an ornamental submerged plant indigenous to tropical America, has been introduced to numerous countries in Europe, Asia, and Oceania, impacting native aquatic ecosystems. Given this species is a popular aquarium plant and widely traded, there is a high risk of introduction and invasion into other environments. In the current study the potential global geographic distribution of C. caroliniana was predicted under the effects of climate change and human influence in an optimised MaxEnt model. The model used rigorously screened occurrence records of C. caroliniana from hydro informatic datasets and 20 associated influencing factors. The findings indicate that temperature and human-mediated activities significantly influenced the distribution of C. caroliniana. At present, C. caroliniana covers an area of approximately 1531×104 km2 of appropriate habitat, especially in the south-eastern parts of South, central and North America, Southeast Asia, eastern Australia, and most of Europe. The suitable regions are anticipated to expand under future climate scenarios; however, the dynamics of the changes vary between different extents of climate change. For example, C. caroliniana is expected to expand to higher latitudes, following global temperature increases under SSP1-2.6 and SSP2-4.5 scenarios, however, intolerance to temperature extremes may mediate invasion at higher latitudes under future extreme climate scenarios, e.g., SSP5-8.5. Owing to the severe impacts its invasion causes, early warning and stringent border quarantine processes are required to guard against the introduction of C. caroliniana especially in the invasion hotspots such as, Peru, Italy, and South Korea.

5.
Nano Lett ; 24(22): 6560-6567, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775289

RESUMO

Kagome lattice AV3Sb5 has attracted tremendous interest because it hosts correlated and topological physics. However, an in-depth understanding of the temperature-driven electronic states in AV3Sb5 is elusive. Here we use scanning tunneling microscopy to directly capture the rotational symmetry-breaking effect in KV3Sb5. Through both topography and spectroscopic imaging of defect-free KV3Sb5, we observe a charge density wave (CDW) phase transition from an a0 × a0 atomic lattice to a robust 2a0 × 2a0 superlattice upon cooling the sample to 60 K. An individual Sb-atom vacancy in KV3Sb5 further gives rise to the local Friedel oscillation (FO), visible as periodic charge modulations in spectroscopic maps. The rotational symmetry of the FO tends to break at the temperature lower than 40 K. Moreover, the FO intensity shows an obvious competition against the intensity of the CDW. Our results reveal a tantalizing electronic nematicity in KV3Sb5, highlighting the multiorbital correlation in the kagome lattice framework.

7.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783169

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Região CA1 Hipocampal , Regulação para Baixo , Plasticidade Neuronal , Neurônios , Complicações Cognitivas Pós-Operatórias , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Neurônios/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Região CA1 Hipocampal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Potenciação de Longa Duração , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia
8.
J Med Chem ; 67(11): 8730-8756, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38817193

RESUMO

The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.


Assuntos
Aminoaciltransferases , Benzimidazóis , Inibidores Enzimáticos , Animais , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Cristalografia por Raios X , Camundongos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Relação Estrutura-Atividade , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Descoberta de Drogas , Masculino , Modelos Moleculares
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 370-375, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660838

RESUMO

OBJECTIVE: To analyze the efficacy and safety of flumatinib, a second-generation tyrosine kinase inhibitor (TKI) independently developed in China, in patients with chronic myelogenous leukemia in chronic phase (CML-CP) who falied first-line and second-line treatment. METHODS: The clinical data of 30 CML-CP patients treated with flumatinib in Lianyungang First People's Hospital from January 2020 to September 2022 were collected retrospectively. Among them, 15 patients who received imatinib first-line treatment but failed treatment were included in the second-line group, and the other 15 patients who failed second-line treatment with nilotinib or dasatinib were included in the third-line group. The hematological and molecular responses of the patients in the two groups at 3, 6 and 12 months of treatment, and the event-free survival (EFS) and adverse reactions of patients at the end of follow-up were statistical analyzed. RESULTS: At 3, 6, and 12 months of treatment, 10, 11, and 12 patients in the second line group achieved major molecular response (MMR), which was higher than that of 3, 4, and 5 patients in the third line group (P =0.010, P =0.011, P =0.010). At 3 months of treatment, 12 and 13 patients achieved complete hematological response (CHR) and early molecular response (EMR) in the second-line group, which was higher than that of 9 and 13 patients in the third-line group, but the difference between the two groups was not statistically significant (P =0.232, P =1.000); At 6 and 12 months of treatment, 6 and 7 patients in the second-line group achieved MR4.5, which were higher than of 3 and 2 cases in the third-line group, but the difference was not statistically significant (P =0.427, P =0.713). The hematological adverse reactions of patients in the second-line group during treatment the period were mainly grade 1-2 thrombocytopenia and anemia, and no grade 3-4 of adverse reactions occurred. In the third-line group, there were 2 cases of grade 1-2 thrombocytopenia, grade 1-2 anemia and white blood cell 3 cases were reduced each, 1 case of grade 3-4 anemia, 2 cases of grade 3-4 neutropenia. The non-hematological adverse reactions in the second-line group were rash (2 cases), headache (1 case), diarrhea (1 case), fatigue (1 case), limb pain (1 case). There were 1 cases of diarrhea, 1 cases of nausea, and 1 cases of edema in the third-line group. There was no statistical significance in hematological and non-hematological adverse reactions between the two groups of patients (P >0.05). At the end of follow-up, the EFS rate of patients in the second-line group was higher than that in the third-line group (100% vs 93.3%), but the difference was not statistically significant (P =0.317). CONCLUSION: The second-generation TKI flumatinib independently developed in China, has good curative effect and safety for CML-CP patients who failed first-line and second-line treatment.


Assuntos
Aminopiridinas , Benzamidas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Estudos Retrospectivos , Benzamidas/uso terapêutico , Feminino , Masculino , Aminopiridinas/efeitos adversos , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinas/efeitos adversos , Pessoa de Meia-Idade , Morfolinas/uso terapêutico , Dasatinibe/uso terapêutico , Dasatinibe/efeitos adversos , Adulto
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 483-492, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660856

RESUMO

OBJECTIVE: To investigate the clinical efficacy and safety of ixazomib-containing regimens in the treatment of patients with multiple myeloma (MM). METHODS: A retrospective analysis was performed on the clinical efficacy and adverse reactions of 32 MM patients treated with a combined regimen containing ixazomib in the Hematology Department of the First People's Hospital of Lianyungang from January 2020 to February 2022. Among the 32 patients, 15 patients were relapsed and refractory multiple myeloma (R/RMM) (R/RMM group), 17 patients who responded to bortezomib induction therapy but converted to ixazomib-containing regimen due to adverse events (AE) or other reasons (conversion treatment group). The treatment included IPD regimen (ixazomib+pomalidomide+dexamethasone), IRD regimen (ixazomib+lenalidomide+dexamethasone), ICD regimen (ixazomib+cyclophosphamide+dexamethasone), ID regimen (ixazomib+dexamethasone). RESULTS: Of 15 R/RMM patients, overall response rate (ORR) was 53.3%(8/15), among them, 1 achieved complete response (CR), 2 achieved very good partial response (VGPR) and 5 achieved partial response (PR). The ORR of the IPD, IRD, ICD and ID regimen group were 100%(3/3), 42.9%(3/7), 33.3%(1/3), 50%(1/2), respectively, there was no statistically significant difference in ORR between four groups (χ 2=3.375, P =0.452). The ORR of patients was 50% after first-line therapy, 42.9% after second line therapy, 60% after third line therapy or more, with no statistically significant difference among them (χ2=2.164, P =0.730). In conversion treatment group, ORR was 88.2%(15/17), among them, 6 patients achieved CR, 5 patients achieved VGPR and 4 patients achieved PR. There was no statistically significant difference in ORR between the IPD(100%, 3/3), IRD(100%, 6/6), ICD(100%, 3/3) and ID(60%, 3/5) regimen groups (χ2=3.737,P =0.184). The median progression-free survival (PFS) time of R/RMM patients was 9 months (95% CI : 6.6-11.4 months), the median overall survival (OS) time was 18 months (95% CI : 11.8-24.4 months). The median PFS time of conversion treatment group was 15 months (95% CI : 7.3-22.7 months), the median OS time not reached. A total of 10 patients suffered grade 3- 4 adverse event (AE). The common hematological toxicities were leukocytopenia, anemia, thrombocytopenia. The common non-hematological toxicities were gastrointestinal symptoms (diarrhea, nausea and vomit), peripheral neuropathy, fatigue and infections. Grade 1-2 peripheral neurotoxicity occurred in 7 patients. CONCLUSION: The ixazomib-based chemotherapy regimens are safe and effective in R/RMM therapy, particularly for conversion patients who are effective for bortezomib therapy. The AE was manageable and safe.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Compostos de Boro , Dexametasona , Glicina , Glicina/análogos & derivados , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Compostos de Boro/uso terapêutico , Glicina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Retrospectivos , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Masculino , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade , Bortezomib/efeitos adversos , Idoso
11.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453468

RESUMO

The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant-like effect. The present study suggests that potentiation of the PIC→BLA and PIC→VM projections may be important pathophysiological bases for hyperalgesia and depression-like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Masculino , Animais , Hiperalgesia , Dor Crônica/complicações , Depressão , Córtex Insular , Tonsila do Cerebelo/metabolismo , Neuralgia/metabolismo , Comorbidade , Tálamo , Antidepressivos/uso terapêutico
12.
Angew Chem Int Ed Engl ; 63(20): e202402726, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38494458

RESUMO

Organic photothermal materials have attracted increasing attention because of their structural diversity, flexibility, and compatibility. However, their energy conversion efficiency is limited owing to the narrow absorption spectrum, strong reflection/transmittance, and insufficient nonradiative decay. In this study, two quinoxaline-based D-A-D-A-D-type molecules with ethyl (BQE) or carboxylate (BQC) substituents were synthesized. Strong intramolecular charge transfer provided both molecules with a broad absorption range of 350-1000 nm. In addition, the high reorganization energy and weak molecular packing of BQE resulted in efficient nonradiative decay. More importantly, the self-assembly of BQE leads to a textured surface and enhances the light-trapping efficiency with significantly reduced light reflection/transmittance. Consequently, BQE achieved an impressive solar-thermal conversion efficiency of 18.16 % under 1.0 kW m-2 irradiation with good photobleaching resistance. Based on this knowledge, the water evaporation rate of 1.2 kg m-2 h-1 was attained for the BQE-based interfacial evaporation device with an efficiency of 83 % under 1.0 kW m-2 simulated sunlight. Finally, the synergetic integration of solar-steam and thermoelectric co-generation devices based on BQE was realized without significantly sacrificing solar-steam efficiency. This underscores the practical applications of BQE-based technology in effectively harnessing photothermal energy. This study provides new insights into the molecular design for enhancing light-trapping management by molecular self-assembly, paving the way for photothermal-driven applications of organic photothermal materials.

13.
PNAS Nexus ; 3(3): pgae113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528954

RESUMO

Networks offer a powerful approach to modeling complex systems by representing the underlying set of pairwise interactions. Link prediction is the task that predicts links of a network that are not directly visible, with profound applications in biological, social, and other complex systems. Despite intensive utilization of the topological feature in this task, it is unclear to what extent a feature can be leveraged to infer missing links. Here, we aim to unveil the capability of a topological feature in link prediction by identifying its prediction performance upper bound. We introduce a theoretical framework that is compatible with different indexes to gauge the feature, different prediction approaches to utilize the feature, and different metrics to quantify the prediction performance. The maximum capability of a topological feature follows a simple yet theoretically validated expression, which only depends on the extent to which the feature is held in missing and nonexistent links. Because a family of indexes based on the same feature shares the same upper bound, the potential of all others can be estimated from one single index. Furthermore, a feature's capability is lifted in the supervised prediction, which can be mathematically quantified, allowing us to estimate the benefit of applying machine learning algorithms. The universality of the pattern uncovered is empirically verified by 550 structurally diverse networks. The findings have applications in feature and method selection, and shed light on network characteristics that make a topological feature effective in link prediction.

14.
Nat Commun ; 15(1): 2157, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461161

RESUMO

Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies ( η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.

15.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482357

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38551428

RESUMO

Background: Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has been reported to have anti-carcinogenic effects in gastric cancer, but the specific mechanisms by which LHPP influences GC remain unclear. This study aims to investigate the effect and mechanism of LHPP on GC. Methods: In the in vivo experiments, we constructed a GC mouse model to investigate the impact of LHPP on tumor growth and the expression of related proteins in mice. In the in vitro experiments using human GC cells, we established LHPP overexpression and knockdown cell lines to study the potential mechanisms of LHPP in the progression of GC. We also explored the influence of ROS on the function of LHPP in GC by culturing cells under low glucose and H2O2 conditions. Results: In vivo experiments, comparing the tumor development of mice, it was found that LHPP inhibited tumor formation in vivo. Compared with the NC group, it was found that overexpression of LHPP led to a decrease in the expression levels of ROS-related proteins and the protein expression levels of p-Src, p-ERK, and MMP-9 after LHPP overexpression. In vitro experiments, it was found that LHPP overexpression inhibited the migration and invasion of GC cells. However, this regulatory effect of LHPP on GC cells was suppressed when ROS levels increased. Conclusion: The regulation of oxidative stress response by LHPP is an important mechanism in the development of GC. LHPP inhibits the development of GC by inhibiting the Src-ERK pathway and MMPs. Our study provides a reliable working basis for future in-depth research.

17.
J Dermatol Sci ; 113(3): 103-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331641

RESUMO

BACKGROUND: TET2 participates in tumor progression and intrinsic immune homeostasis via epigenetic regulation. TET2 has been reported to be involved in maintaining epithelial barrier homeostasis and inflammation. Abnormal epidermal barrier function and TET2 expression have been detected in psoriatic lesions. However, the mechanisms underlying the role of TET2 in psoriasis have not yet been elucidated. OBJECTIVE: To define the role of TET2 in maintaining epithelial barrier homeostasis and the exact epigenetic mechanism in the dysfunction of the epidermal barrier in psoriasis. METHODS: We analyzed human psoriatic skin lesions and datasets from the GEO database, and detected the expression of TET2/5-hmC together with barrier molecules by immunohistochemistry. We constructed epidermal-specific TET2 knockout mice to observe the effect of TET2 deficiency on epidermal barrier function via toluidine blue penetration assay. Further, we analyzed changes in the expression of epidermal barrier molecules by immunofluorescence in TET2-specific knockout mice and psoriatic model mice. RESULTS: We found that decreased expression of TET2/5-hmC correlated with dysregulated barrier molecules in human psoriatic lesions. Epidermal-specific TET2 knockout mice showed elevated transdermal water loss associated with abnormal epidermal barrier molecules. Furthermore, we observed that TET2 knockdown in keratinocytes reduced filaggrin expression via filaggrin promoter methylation. CONCLUSION: Aberrant epidermal TET2 affects the integrity of the epidermal barrier through the epigenetic dysregulation of epidermal barrier molecules, particularly filaggrin. Reduced TET2 expression is a critical factor contributing to an abnormal epidermal barrier in psoriasis.


Assuntos
Dioxigenases , Psoríase , Animais , Humanos , Camundongos , Dioxigenases/deficiência , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Camundongos Knockout , Psoríase/patologia
18.
Nano Lett ; 24(7): 2345-2351, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334460

RESUMO

Nonvolatile multistate manipulation of two-dimensional (2D) magnetic materials holds promise for low dissipation, highly integrated, and versatile spintronic devices. Here, utilizing density functional theory calculations and Monte Carlo simulations, we report the realization of nonvolatile and multistate control of topological magnetism in monolayer CrI3 by constructing multiferroic heterojunctions with quadruple-well ferroelectric (FE) materials. The Pt2Sn2Te6/CrI3 heterojunction exhibits multiple magnetic phases upon modulating FE polarization states of FE layers and interlayer sliding. These magnetic phases include Bloch-type skyrmions and ferromagnetism, as well as a newly discovered topological magnetic structure. We reveal that the Dzyaloshinskii-Moriya interaction (DMI) induced by interfacial coupling plays a crucial role in magnetic skyrmion manipulation, which aligns with the Fert-Levy mechanism. Moreover, a regular magnetic skyrmion lattice survives when removing a magnetic field, demonstrating its robustness. The work sheds light on an effective approach to nonvolatile and multistate control of 2D magnetic materials.

19.
PLoS Biol ; 22(2): e3002518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386616

RESUMO

Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.


Assuntos
Dor Crônica , Camundongos , Masculino , Animais , Giro do Cíngulo/fisiologia , Hiperalgesia , Depressão , Neurônios/fisiologia
20.
ACS Appl Mater Interfaces ; 16(7): 9224-9230, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335011

RESUMO

Soft robots have great potential applications in manufacturing, disaster rescue, medical treatment, etc. Artificial muscle is one of the most important components of a soft robot. In previous years, hydrogel actuators that can be controllably deformed by the stimuli of external signals have been developed as good candidates for muscle-like materials. In this article, we successfully prepared a chemical fuel-driven self-resettable bilayer hydrogel actuator mimicking natural muscles with the aid of a new negative feedback reaction network. The actuator can temporarily deform upon the addition of H+ (chemical fuel). Subsequently, H+ accelerated the reaction between BrO3- and Fe(CN)64-, which consume H+. It resulted in the spontaneous recovery of the pH as well as the shape of the actuator. Such an actuator exhibits a great similarity with natural muscles in actuation mechanisms and automaticity in the manipulation compared to the widely reported stimuli-responsive hydrogel actuators. This illustrates that fuel-driven self-resettable hydrogel is a promising dynamic material for mimicking the functions of living creatures.


Assuntos
Hidrogéis , Robótica , Músculos , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...