Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(1): 1-10, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173810

RESUMO

The epithelial mesenchymal transition (EMT) plays significant roles in the progression of cancer and fibrotic disease. Moreover, this process is reversible, resulting in mesenchymal epithelial transition (MET), which plays an important role in cancer metastasis. There is a lack of methods to trace and target EMT cells using synthetic biology circuits, which makes it difficult to study the cell fate or develop targeted treatments. In this study, we introduced responsive EMT sensing circuits, which sense the EMT using specific promoters that respond to transcription factors typical of EMT activation (EMT-TFs). The transcriptional strength of EMT-sensing promoters decreased more than 13-fold in response to the overexpression of the EMT-TF. Then, the NOT gate circuits were built by placing the tetR transcription repressor under the control of EMT sensing promoters and expressed an output signal using the constitutive CMV promoter modified with tetO sites This circuit is named EMT sensing and responding circuits .When the EMT transcription factors was present, we observed a 5.8-fold signal increase in the system. Then, we successfully distinguished mesenchymal breast cancer cells from epithelial cancer cells and repressed the proliferation of EMT tumor cells using our circuits. The EMT sensing and responding circuits are promising tools for the identification of EMT cells, which is crucial for EMT-related disease therapy and investigating the mechanisms underlying the reversible EMT process.

2.
J Neuroinflammation ; 18(1): 118, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022890

RESUMO

BACKGROUND: Translational failures in anti-adhesion molecule therapies after stroke reveal the necessity of developing new strategies that not only interrupt leukocyte recruitment but also consider the inhibition of endothelial cell inflammation, verification of therapeutic time window, and normal function maintenance of circulating leukocytes. Our study focused on the potential therapeutic value of CD151 downregulation in improving current anti-adhesion molecule therapies. METHODS: Lentivirus intracerebroventricular administration was conducted to inhibit the CD151 expression and observe its functional influence on neurological injuries and outcomes. Then, immunohistochemistry and myeloperoxidase activity assessment were performed to explore the effects of CD151 expression on neutrophil and monocyte recruitment after rat cerebral ischemia. Primary rat brain microvascular endothelial cells were subjected to oxygen glucose deprivation and reoxygenation to elucidate the underlying working mechanisms between CD151 and VCAM-1. RESULTS: The CD151 downregulation remarkably reduced neurological injuries and improved neurological outcomes, which were accompanied with reduced neutrophil and monocyte infiltration after the CD151 downregulation. The VCAM-1 expression was remarkably decreased among the adhesion molecules on the endothelial cell responsible for neutrophil and monocyte infiltration. The activation of p38 MAPK and NF-κB pathways was restricted after the CD151 downregulation. p38 MAPK and NF-κB inhibitors decreased the VCAM-1 expression, and p38 acted as an upstream regulator of NF-κB. However, CD151 downregulation did not directly influence the neutrophil and monocyte activation. CONCLUSIONS: Overall, CD151 regulated the expression of adhesion molecules. It also played a critical role in suppressing VCAM-1-mediated neutrophil and monocyte infiltration via the p38/NF-κB pathway. This study possibly provided a new basis for improving current anti-adhesion molecule therapies.


Assuntos
Quimiotaxia de Leucócito , Regulação para Baixo , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Leucócitos , Tetraspanina 24/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Adesão Celular , Inibição de Migração Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , NF-kappa B/metabolismo , Neuroproteção/imunologia , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Cell Death Dis ; 12(4): 327, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771973

RESUMO

The endothelial-to-mesenchymal transition (EndMT) is an important source of fibrotic cells in idiopathic pulmonary fibrosis (IPF). However, how endothelial cells (ECs) are activated and how EndMT impact IPF remain largely elusive. Here, we use unsupervised pseudotemporal analysis to recognize the heterogeneity of ECs and reconstruct EndMT trajectory of bleomycin (BLM)-treated Tie2creER/+;Rosa26tdTomato/+ IPF mice. Genes like C3ar1 and Lgals3 (protein name galectin-3) are highly correlated with the transitional pseudotime, whose expression is gradually upregulated during the fate switch of ECs from quiescence to activation in fibrosis. Inhibition of galectin-3 via siRNA or protein antagonists in mice could alleviate the pathogenesis of IPF and the transition of ECs. With the stimulation of human pulmonary microvascular endothelial cells (HPMECs) by recombinant proteins and/or siRNAs for galectin-3 in vitro, ß-catenin/GSK3ß signaling and its upstream regulator AKT are perturbed, which indicates they mediate the EndMT progress. These results suggest that EndMT is essential to IPF process and provide potential therapeutic targets for vascular remodeling.


Assuntos
Transição Epitelial-Mesenquimal/genética , Galectina 3/efeitos adversos , Fibrose Pulmonar/genética , Animais , Humanos , Camundongos
4.
Biomacromolecules ; 20(9): 3303-3312, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31094501

RESUMO

Synthetic organogels/hydrogels are attracting growing interests due to their potential applications in biomedical fields, organic electronics, and photovoltaics. Photogelation methods for synthesis of organogels/hydrogels have been shown particularly promising because of the high efficiency and simple synthetic procedures. This study synthesized new biodegradable polyhydroxyalkanoates (PHA)-based organogels/hydrogels via UV photo-cross-linking using unsaturated PHA copolymer poly[(R)-3-hydroxyundecanoate-co-(R)-3-hydroxy-10-undecenoate] (PHU10U) with polyethylene glycol dithiol (PDT) as a photo-cross-linker. The PHU10U was synthesized by an engineered Pseudomonas entomophila and characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. With decreasing the molar ratio of PHU10U to PDT, both the swelling ratio and pore size were decreased. Meanwhile, increasing densities of the gel networks resulted in a higher compressive modulus. Cell cytotoxicity studies based on the CCK-8 assay on both the PHU10U precursor and PHU10U/PDT hydrogels showed that the novel PHA-based biodegradables acting as hydrogels possess good biocompatibility.


Assuntos
Materiais Biocompatíveis/química , Plásticos Biodegradáveis/química , Hidrogéis/química , Poli-Hidroxialcanoatos/biossíntese , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/efeitos da radiação , Plásticos Biodegradáveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/efeitos da radiação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/efeitos da radiação , Polímeros/química , Polímeros/efeitos da radiação , Raios Ultravioleta , Ácidos Undecilênicos/química , Ácidos Undecilênicos/efeitos da radiação
5.
FASEB J ; 33(3): 3496-3509, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30517036

RESUMO

Coculture of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) in vitro leads to the formation of a capillary-like reticular structure by ECs, which has great potential as a better substitute for artificial blood vessels in terms of stability and functionality. To investigate the mechanisms of the early neovascularization induced by MSCs, we analyzed the kinematic features of the motion of ECs and concluded that the dynamic interaction between cells and the extracellular matrix would reveal the capillary-like structure formation. Based on this hypothesis, we proposed a mathematical model to simulate the vascular-like migration pattern of ECs in silico, which was confirmed by in vitro studies. These in vitro studies validated that the dynamic secretion and degradation of collagen I is the critical factor for capillary structure formation. The model proposed based on cell tracking, single cell sequencing, and mathematical simulation provides a better understanding of the neovascularization process induced by MSCs and a possible simple explanation guiding this important cellular behavior.-Yu, Y., Situ, Q., Jia, W., Li, J., Wu, Q., Lei, J. Data driven mathematical modeling reveals the dynamic mechanism of MSC-induced neovascularization.


Assuntos
Células-Tronco Mesenquimais/patologia , Neovascularização Patológica/patologia , Capilares/metabolismo , Capilares/patologia , Células Cultivadas , Técnicas de Cocultura/métodos , Colágeno Tipo I/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Modelos Teóricos , Neovascularização Patológica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...