Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36833387

RESUMO

The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.


Assuntos
Genoma de Cloroplastos , Filogenia , Sequências Repetitivas de Ácido Nucleico
2.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233072

RESUMO

Fruitlet abscission frequently occurs in Areca catechu L. and causes considerable production loss. However, the inducement mechanism of fruitlet abscission remains mysterious. In this study, we observed that the cell architecture in the abscission zone (AZ) was distinct with surrounding tissues, and varied obviously before and after abscission. Transcriptome analysis of the "about-to-abscise" and "non-abscised" AZs were performed in A. catechu, and the genes encoding the plant-specific DOF (DNA-binding with one finger) transcription factors showed a uniform up-regulation in AZ, suggesting a role of the DOF transcription in A. catechu fruitlet abscission. In total, 36 members of the DOF gene family distributed in 13 chromosomes were identified from the A. catechu genome. The 36 AcDOF genes were classified into nine subgroups based on phylogenic analysis. Six of them showed an AZ-specific expression pattern, and their expression levels varied according to the abscission process. In total, nine types of phytohormone response cis-elements and five types of abiotic stress related cis-elements were identified in the promoter regions of the AcDOF genes. In addition, histochemical staining showed that lignin accumulation of vascular bundles in AZ was significantly lower than that in pedicel and mesocarp, indicating the specific characteristics of the cell architecture in AZ. Our data suggests that the DOF transcription factors might play a role in fruitlet abscission regulation in A. catechu.


Assuntos
Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Areca , DNA , Lignina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mitochondrial DNA B Resour ; 7(1): 43-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34912966

RESUMO

Camellia gigantocarpa Hu et T. C. Huang, belonging to the Theaceae family, is an excellent landscape tree species with high ornamental value. It is also an important woody oil-bearing plant with high economic value. This study reports the first complete chloroplast genome sequence of C. gigantocarpa (GenBank accession number: MZ054232). Its whole chloroplast genome is 156,953 bp long with an overall GC content of 37.31%, which is composed of a large single copy region (86,631 bp), a small single copy region (18,402 bp), and a pair of inverted repeat regions (25,960 bp each). A total of 135 genes were predicted in this genome, namely eight ribosomal RNA genes, 37 transfer RNA genes, and 90 protein-coding genes. Based on maximum likelihood analysis results, we found that the Camellia species are clustered into a distinct branch, and the phylogenetic relationships among C. gigantocarpa, C. crapnelliana, and C. kissii were the closest.

4.
Mitochondrial DNA B Resour ; 6(11): 3169-3170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660893

RESUMO

Camellia osmantha is a new species of the Camellia genus discovered in Nanning, Guangxi, China, in 2012. It can be used as an excellent woody oil crop. There is little related research on this species in China and abroad, and its genome information is still lacking. In this study, the complete chloroplast genome sequence of C. osmantha was first reported (GenBank number: MZ128138). The whole chloroplast genome is 156,981 bp in length with a GC content of 37.28%, and it is composed of a large single copy (LSC) region of 86,647 bp, a small single copy (SSC) region of 18,284 bp, and a pair of inverted repeat (IR) regions of 26,025 bp each. The genome contains a total of 135 functional genes, including 37 transfer RNA genes, 90 protein-coding genes, and 8 ribosomal RNA genes. The maximum likelihood analysis based on 21 chloroplast genomes showed that C. osmantha and C. oleifera (MF541730.2) were the most closely related.

5.
Front Plant Sci ; 12: 710093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408765

RESUMO

Deficiency of certain elements can cause leaf chlorosis in Areca catechu L. trees, which causes considerable production loss. The linkage between nutrient deficiency and chlorosis phenomenon and physiological defect in A. catechu remains unclear. Here, we found that low iron supply is a determinant for chlorosis of A. catechu seedling, and excessive iron supply resulted in dark green leaves. We also observed morphological characters of A. catechu seedlings under different iron levels and compared their fresh weight, chlorophyll contents, chloroplast structures and photosynthetic activities. Results showed that iron deficiency directly caused chloroplast degeneration and reduced chlorophyll synthesis in chlorosis leaves, while excessive iron treatment can increase chlorophyll contents, chloroplasts sizes, and inflated starch granules. However, both excessive and deficient of iron decreases fresh weight and photosynthetic rate in A. catechu seedlings. Therefore, we applied transcriptomic and metabolomic approaches to understand the effect of different iron supply to A. catechu seedlings. The genes involved in nitrogen assimilation pathway, such as NR (nitrate reductase) and GOGAT (glutamate synthase), were significantly down-regulated under both iron deficiency and excessive iron. Moreover, the accumulation of organic acids and flavonoids indicated a potential way for A. catechu to endure iron deficiency. On the other hand, the up-regulation of POD-related genes was assumed to be a defense strategy against the excessive iron toxicity. Our data demonstrated that A. catechu is an iron-sensitive species, therefore the precise control of iron level is believed to be the key point for A. catechu cultivation.

6.
Ecol Evol ; 5(22): 5364-5371, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151138

RESUMO

Flexistyly in Plagiostachys was first reported by Takano et al., while they provided no detailed study on pollination biology and breeding system. In this study, we tested this suspicion in one species of Plagiostachys (Plagiostachys austrosinensis). Field observations suggested that flexistyly was present in this species, and stigmatic behavior was similar to that reported for Alpinia and Amomum species. Two phenotypes (anaflexistylous and cataflexistylous) occurred in a ratio of 1:1 in natural populations. Anthesis began around 1530-1600 h and lasted for about 24 h. Pollen viability and stigma receptivity remained high throughout the flowering process. Mean nectar volume (4.15-11.30 µL) and mean sugar concentration (>32%) also remained at a high level during the flowering process. No fruit set occurred in unpollinated bagged plants. Two pollinators (Bombus pyrosoma and Vespidae spp.) and one pollen robber (Mutillidae spp.) were found as flower visitors. Fruit set following self-pollination and cross-pollination did not differ significantly in the cataflexistylous morph. Partial self-incompatibility was apparent in the anaflexistylous morph. These results provide the concrete evidence of flexistyly in Plagiostachys and a more thorough understanding of its evolutionary origin in gingers.

7.
PLoS One ; 5(1): e8613, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20062805

RESUMO

BACKGROUND: The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. CONCLUSIONS: The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.


Assuntos
DNA de Plantas/genética , Processamento Eletrônico de Dados , Plantas Medicinais/genética , Reação em Cadeia da Polimerase
8.
Physiol Plant ; 139(1): 1-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20059733

RESUMO

Huperzia serrata produces various types of lycopodium alkaloids, especially the huperzine A (HupA) that is a promising drug candidate for Alzheimer's disease. Despite the medicinal importance of H. serrata, little genomic or transcriptomic data are available from the public databases. A cDNA library was thus generated from RNA isolated from the leaves of H. serrata. A total of 4012 clones were randomly selected from the library, and 3451 high-quality expressed sequence tags (ESTs) were assembled to yield 1510 unique sequences with an average length of 712 bp. The majority (79.4%) of the unique sequences were assigned to the putative functions based on the BLAST searches against the public databases. The functions of these unique sequences covered a broad set of molecular functions, biological processes and biochemical pathways according to GO and KEGG assignments. The transcripts involved in the secondary metabolite biosynthesis of alkaloids, terpenoids and flavone/flavonoids, such as cytochrome P450, lysine decarboxylase (LDC), flavanone 3-hydroxylase, squalene synthetase and 2-oxoglutarate 3-dioxygenase, were well represented by 34 unique sequences in this EST dataset. The corresponding peptide sequence of the LDC contained the Pfam 03641 domain and was annotated as a putative LDC. The unique sequences encoding transcription factors, phytohormone biosynthetic enzymes and signaling components were also found in this EST collection. In addition, a total of 501 potential SSR-motif microsatellite loci were identified from the 393 H. serrata leaf unique sequences. This set of non-redundant ESTs and the molecular markers obtained in this study will establish valuable resources for a wide range of applications including gene discovery and identification, genetic mapping and analysis of genetic diversity, cultivar identification and marker-assisted selections in this important medicinal plant.


Assuntos
Etiquetas de Sequências Expressas , Huperzia/genética , Huperzia/metabolismo , Folhas de Planta/metabolismo , DNA Complementar , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...