Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38671952

RESUMO

Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.

2.
Cancer Immunol Res ; 12(1): 72-90, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-37956411

RESUMO

Pancreatic cancer is a deadly disease that is largely resistant to immunotherapy, in part because of the accumulation of immunosuppressive cells in the tumor microenvironment (TME). Much evidence suggests that tumor-derived exosomes (TDE) contribute to the immunosuppressive activity mediated by myeloid-derived suppressor cells (MDSC) within the pancreatic cancer TME. However, the underlying mechanisms remain elusive. Herein, we report that macrophage migration inhibitory factor (MIF) in TDEs has a key role in inducing MDSC formation in pancreatic cancer. We identified MIF in both human and murine pancreatic cancer-derived exosomes. Upon specific shRNA-mediated knockdown of MIF, the ability of pancreatic cancer-derived exosomes to promote MDSC differentiation was abrogated. This phenotype was rescued by reexpression of the wild-type form of MIF rather than a tautomerase-null mutant or a thiol-protein oxidoreductase-null mutant, indicating that both MIF enzyme activity sites play a role in exosome-induced MDSC formation in pancreatic cancer. RNA sequencing data indicated that MIF tautomerase regulated the expression of genes required for MDSC differentiation, recruitment, and activation. We therefore developed a MIF tautomerase inhibitor, IPG1576. The inhibitor effectively inhibited exosome-induced MDSC differentiation in vitro and reduced tumor growth in an orthotopic pancreatic cancer model, which was associated with decreased numbers of MDSCs and increased infiltration of CD8+ T cells in the TME. Collectively, our findings highlight a pivotal role for MIF in exosome-induced MDSC differentiation in pancreatic cancer and underscore the potential of MIF tautomerase inhibitors to reverse the immunosuppressive pancreatic cancer microenvironment, thereby augmenting anticancer immune responses.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Células Supressoras Mieloides , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Diferenciação Celular , Linhagem Celular Tumoral , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Microambiente Tumoral
3.
J Neuroimmune Pharmacol ; 18(4): 610-627, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782386

RESUMO

Serotonergic dysfunction is related to both motor and nonmotor symptoms in Parkinson's disease (PD). As a 5-HT receptor, 5-HT4 receptor (5-HT4R) is well-studied and already-used in clinical therapy of constipation, which is a typical non-motor symptom in PD. In this study, we investigated the role of 5-HT4R as a regulator of gut function in MPTP-induced acute PD mice model. Daily intraperitoneal injection of GR 125487 (5-HT4R antagonist) was administered 3 days before MPTP treatment until sacrifice. Seven days post-MPTP treatment, feces were collected and gastrointestinal transit time (GITT) was measured, 8 days post-MPTP treatment, behavioral tests were performed, and then animals were sacrificed for the further analysis. We found GR 125487 pretreatment not only increased GITT, but also aggravated MPTP-induced motor bradykinesia. In addition, GR 125487 pretreatment exacerbated the loss of dopaminergic neurons probably by suppressing JAK2/PKA/CREB signaling pathway and increased reactive glia and neuroinflammation in the striatum. 16 S rRNA sequencing of fecal microbiota showed that GR 125487 pretreatment altered the composition of gut microbiota, in which the abundance of Akkermansia muciniphila and Clostridium clostridioforme was increased, whereas that of Parabacteroides distasonis and Bacteroides fragilis was decreased, which are closely associated with inflammation condition. Taken together, we demonstrated that GR 125487 pretreatment exacerbates MPTP-induced striatal neurodegenerative processes possibly via the JAK2/PKA/CREB pathway and neuroinflammation by altering gut microbiota composition. In the microbiota-gut-brain axis of PD, 5-HT4R should be further explored and might serve as a target for PD diagnosis and treatment.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Receptores 5-HT4 de Serotonina , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos/metabolismo
4.
Br J Haematol ; 201(5): 917-934, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36852636

RESUMO

The tumour microenvironment (TME) plays a critical role in disease progression in multiple myeloma (MM). This study aimed to present an atlas of MM-TME in disease progression and explore TME-directed therapeutic strategies. We performed single-cell RNA sequencing (scRNAseq) in samples from different disease stages. We validated the findings by bulk RNAseq, flow cytometry (FCM) and in vitro and in vivo functional experiments. We delineated a compromised TME during disease progression, characterized by enrichment of exhausted NK cells and CD8+ T cells and reprogramming of macrophages (MPs). The reprogrammed tumour-associated MPs (TAMs) displayed a mixed phenotype showing both M1 and M2 features, with two TAM clusters exclusively present in the MM stage showing higher M2 scores. We validated the mixed M1/M2 phenotype in TAMs in a clinical cohort and verified phagocytic dysfunction in reprogrammed TAMs. Cellular interaction analysis identified two enriched ligand-receptor pairs between MPs and malignant plasma cells (PCs), including the SIRPA-CD47 pathway suppressing phagocytosis and the CD74-MIF (macrophage inhibitory factor) reshaping the phenotype of MPs. The expression of CD47 and MIF correlated with disease progression and adverse outcomes. We designed a dual-MP-targeted strategy by combining an anti-CD47 antibody and MIF inhibitor to activate phagocytosis and repolarize MP to a functional phenotype and proved its potent antitumour effect in vitro and in vivo. We drafted alterations in MM-TME during disease progression and unravelled TAM's reprogramming. The dual MP-targeted approach blocking both CD47 and MIF showed potent antitumour effects.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Linfócitos T CD8-Positivos , Macrófagos/metabolismo , Fagocitose , Progressão da Doença , Microambiente Tumoral
5.
Breast Cancer Res Treat ; 196(1): 31-44, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36040642

RESUMO

PURPOSE: Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein-protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling. METHODS: USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student's t test (two-tailed unpaired) and χ2 test. RESULTS: We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer. CONCLUSION: Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.


Assuntos
Neoplasias da Mama , Sirtuínas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Dano ao DNA , Enzimas Desubiquitinantes/genética , Resistencia a Medicamentos Antineoplásicos/genética , Endopeptidases/genética , Feminino , Humanos , NAD/genética , Sirtuínas/genética , Sirtuínas/metabolismo
6.
Apoptosis ; 27(5-6): 409-425, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435532

RESUMO

Oxidative stress-induced autophagy dysfunction is involved in the pathogenesis of intervertebral disc degeneration (IVDD). MicroRNAs (miRNAs) not only have been regarded as important regulators of IVDD but also reported to be related to autophagy. This research was aimed to explore the role of miR-130b-3p in IVDD and its regulation on autophagy mechanism. The miR-130b-3p expression in the patient's degenerative nucleus pulposus (NP) samples and rat NP tissues was detected by qRT-PCR and FISH assay. The miR-130b-3p was knocked down or overexpressed in the human NP cells by lentivirus transfection. TBHP was used to induce oxidative stress in the human NP cells. Apoptosis, senescence, and autophagy were evaluated by flow cytometry, ß-gal staining, immunofluorescence, electron microscopy, and Western blot in the miR-130b-3p knocked down human NP cells under TBHP treatment. The relationship between the miR-130b-3p and ATG14 or PRKAA1 was confirmed by luciferase assay. The siRNA transfection was used to knock down the ATG14 and PRKAA1 expression, and then the human NP cells functions were further determined. In the in vivo experiment, the IVDD rat model was constructed and an adeno-associated virus (AAV)-miR-130b-3p inhibitor was intradiscally injected. After that, MRI and histological staining were conducted to evaluate the role of miR-130b-3p inhibition in the IVDD rat model. We found that the miR-130b-3p was upregulated in the degenerative NP samples from humans and rats. Interestingly, the inhibition of miR-130b-3p rescued oxidative stress-induced dysfunction of the human NP cells, and miR-130b-3p inhibition upregulated autophagy. Mechanistically, we confirmed that the miR-130b-3p regulated the ATG14 and PRKAA1 directly and the knockdown of the ATG14 or PRKAA1 as well as the treatment of autophagy inhibitor blockaded the autophagic flux and reversed the protective effects of miR-130b-3p inhibition in the TBHP-induced human NP cells. Furthermore, the inhibition of the miR-130b-3p via AAV- miR-130b-3p injection ameliorated the IVDD in a rat model. These data demonstrated that the miR-130b-3p inhibition could upregulate the autophagic flux and alleviate the IVDD via targeting ATG14 and PRKAA1.The translational potential of this article: The suppression of miR-130b-3p may become an effective therapeutic strategy for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Animais , Apoptose/genética , Autofagia/genética , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Ratos
7.
Cell Death Discov ; 8(1): 166, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383144

RESUMO

This study aimed to investigate the role of deubiquitinating enzyme 3 (DUB3) in the regulation of Krüppel-like factor 4 (KLF4) expression in hepatocellular carcinoma (HCC). Gain- and loss-of-function assay, luciferase reporter assay, co-immunoprecipitation, and intracellular and extracellular deubiquitination assays were conducted in vitro. A tumor xenograft mouse model was established. The expression of DUB3 and KLF4 was examined in HCC patient specimens. The results showed that DUB3 upregulated KLF4 expression by deubiquitinating and stabilizing KLF4 protein in HCC cells through binding with KLF4. DUB3 inhibited HCC cell proliferation in vitro and tumor growth in vivo while enhancing the chemosensitivity of HCC cells in a KLF4-dependent manner. Furthermore, KLF4 promoted DUB3 transcription by binding to the DUB3 promoter. In HCC patients, DUB3 expression positively correlated with KLF4 expression in HCC tissues. Low DUB3 expression predicted worse overall survival and recurrence in HCC patients. In conclusion, this study revealed a positive DUB3/KLF4 feedback loop that inhibits tumor growth and chemoresistance in HCC. These results suggest that DUB3/KLF4 activation might be a potential therapeutic approach for HCC treatment.

8.
Cell Mol Neurobiol ; 42(5): 1373-1384, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33481118

RESUMO

Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor produced locally in the central nervous system which can promote axonal regeneration, protect motoneurons, and inhibit neuroinflammation. In this study, we used the zebrafish spinal transection model to investigate whether IGF-1 plays an important role in the recovery of motor function. Unlike mammals, zebrafish can regenerate axons and restore mobility in remarkably short period after spinal cord transection. Quantitative real-time PCR and immunofluorescence showed decreased IGF-1 expression in the lesion site. Double immunostaining for IGF-1 and Islet-1 (motoneuron marker)/GFAP (astrocyte marker)/Iba-1 (microglia marker) showed that IGF-1 was mainly expressed in motoneurons and was surrounded by astrocyte and microglia. Following administration of IGF-1 morpholino at the lesion site of spinal-transected zebrafish, swimming test showed retarded recovery of mobility, the number of motoneurons was reduced, and increased immunofluorescence density of microglia was caused. Our data suggested that IGF-1 enhances motoneuron survival and inhibits neuroinflammation after spinal cord transection in zebrafish, which suggested that IGF-1 might be involved in the motor recovery.


Assuntos
Traumatismos da Medula Espinal , Peixe-Zebra , Animais , Axônios/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Mamíferos , Neurônios Motores/metabolismo , Regeneração Nervosa/fisiologia , Doenças Neuroinflamatórias , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
9.
J Orthop Translat ; 29: 19-29, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34094855

RESUMO

BACKGROUND: Krüppel like factor 10 (KLF10), which is also known as TGF-ß Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. METHODS: The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. RESULTS: We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1ß induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-ß signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. CONCLUSIONS: This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-ß signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.

10.
Biochem Biophys Res Commun ; 556: 16-22, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836343

RESUMO

Evidence suggests constipation precedes motor dysfunction and is the most common gastrointestinal symptom in Parkinson's disease (PD). 5-HT4 receptor (5-HT4R) agonist prucalopride has been approved to treat chronic constipation. Here, we reported intraperitoneal injection of prucalopride for 7 days increased dopamine and decreased dopamine turnover. Prucalopride administration improved motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. Prucalopride treatment also ameliorated intestinal barrier impairment and increased IL-6 release in PD model mice. However, prucalopride treatment exerted no impact on JAK2/STAT3 pathway, suggesting that prucalopride may stimulate IL-6 via JAK2/STAT3-independent pathway. In conclusion, prucalopride exerted beneficial effects in MPTP-induced Parkinson's disease mice by attenuating the loss of dopamine, improving motor dysfunction and intestinal barrier.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Doença de Parkinson/fisiopatologia , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Janus Quinase 2/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/fisiopatologia , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson Secundária/fisiopatologia , Doença de Parkinson Secundária/prevenção & controle , Fator de Transcrição STAT3/metabolismo
11.
Biochem Biophys Res Commun ; 545: 54-61, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33545632

RESUMO

ACTG1 is a member of the actin family but is not a muscle actin gene. The ACTG1 mutation leads to hearing loss in humans, and the knockdown of ACTG1 suppresses the proliferation and migration of tumor cells; however, its role in intervertebral disc degeneration (IDD) is yet unclear. Bioinformatics methods revealed that ACTG1 might be a hub gene in IDD. Furthermore, the expression ACTG1 in severely degenerated nucleus pulposus (NP) tissues (Pfirrmann grade IV and V) was low as compared to that in mildly degenerated samples (Pfirrmann grade II and III). Moreover, the ACTG1 level was negatively correlated with human disc degeneration grades. The low expression of ACTG1 is also found in degenerated NP tissues in the rat. To further explore the function of ACTG1 in IDD, the gene expression was depleted in human NP cells via siRNA transfection. The ablation of ACTG1 increased MMP3 expression but decreased the level of collagen II. Excessive apoptosis was observed in ACTG1 knockdown groups, indicating that the absence of ACTG1 exacerbated IDD. GO function and pathway enrichment analysis for differentially expressed genes (DEGs) of two microarray datasets (GSE56081 and GSE42611) indicated that inflammatory response plays a crucial role in IDD. Interestingly, in the protein-protein interaction (PPI) network, ACTG1 is connected to the proteins of inflammation-related pathways. Furthermore, ACTG1 knockdown upregulated P-P65 level but suppressed P-Akt expression. These data collectively demonstrated that ACTG1 regulated the development of IDD through the NF-κB-p65 and Akt pathways, and ACTG1 may be a novel marker and therapeutic target of IDD in the future.


Assuntos
Actinas/genética , Actinas/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição RelA/metabolismo , Actinas/antagonistas & inibidores , Adulto , Idoso , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Mapas de Interação de Proteínas , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
12.
Cell Death Discov ; 7(1): 14, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462196

RESUMO

Hepatocellular carcinoma (HCC) is a globally prevailing cancer with a low 5-year survival rate. Little is known about its intricate gene expression profile. Single-cell RNA sequencing is an indispensable tool to explore the genetic characteristics of HCC at a more detailed level. In this study, we profiled the gene expression of single cells from human HCC tumor and para-tumor tissues using the Smart-seq 2 sequencing method. Based on differentially expressed genes, we identified heterogeneous subclones in HCC tissues, including five HCC and two hepatocyte subclones. We then carried out hub-gene co-network and functional annotations analysis followed pseudo-time analysis with regulated transcriptional factor co-networks to determine HCC cellular trajectory. We found that MLX interacting protein like (MLXIPL) was commonly upregulated in the single cells and tissues and associated with a poor survival rate in HCC. Mechanistically, MLXIPL activation is crucial for promoting cell proliferation and inhibits cell apoptosis by accelerating cell glycolysis. Taken together, our work identifies the heterogeneity of HCC subclones, and suggests MLXIPL might be a promising therapeutic target for HCC.

13.
Neurochem Res ; 45(9): 2128-2142, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556930

RESUMO

The abnormal production of short chain fatty acid (SCFAs) caused by gut microbial dysbiosis plays an important role in the pathogenesis and progression of Parkinson's disease (PD). This study sought to evaluate how butyrate, one of SCFAs, affect the pathology in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated mouse model of PD. Sodium butyrate (NaB; 165 mg/kg/day i.g., 7 days) was administrated from the day after the last MPTP injection. Interestingly, NaB significantly aggravated MPTP-induced motor dysfunction (P < 0.01), decreased dopamine (P < 0.05) and 5-HT (P < 0.05) levels, exacerbated declines of dopaminergic neurons (34%, P < 0.05) and downregulated expression of tyrosine hydroxylase (TH, 47%, P < 0.05), potentiated glia-mediated neuroinflammation by increasing the number of microglia (17%, P < 0.05) and activating astrocytes (28%, P < 0.01). In vitro study also confirmed that NaB could significantly exacerbate pro-inflammatory cytokines expression (IL-1ß, 4.11-fold, P < 0.01; IL-18, 3.42-fold, P < 0.01 and iNOS, 2.52-fold, P < 0.05) and NO production (1.55-fold, P < 0.001) in LPS-stimulated BV2 cells. In addition, NaB upregulated the expression of pro-inflammatory cytokines (IL-6, 3.52-fold, P < 0.05; IL-18, 1.72-fold, P < 0.001) and NLRP3 (3.11-fold, P < 0.001) in the colon of PD mice. However, NaB had no effect on NFκB, MyD88 and TNF-α expression in PD mice. Our results indicate that NaB exacerbates MPTP-induced PD by aggravating neuroinflammation and colonic inflammation independently of the NFκB/MyD88/TNF-α signaling pathway.


Assuntos
Ácido Butírico/toxicidade , Inflamação/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular , Colo/efeitos dos fármacos , Citocinas/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Hipocinesia/fisiopatologia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Serotonina/metabolismo , Junções Íntimas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Exp Cell Res ; 387(1): 111772, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836471

RESUMO

Aggregation of α-Synuclein is central to the pathogenesis of Parkinson's disease (PD). However, these α-Synuclein inclusions are not only present in brain, but also in gut. Enteroendocrine cells (EECs), which are directly exposed to the gut lumen, can express α-Synuclein and directly connect to α-Synuclein-containing nerves. Dysbiosis of gut microbiota and microbial metabolite short-chain fatty acids (SCFAs) has been implicated as a driver for PD. Butyrate is an SCFA produced by the gut microbiota. Our aim was to demonstrate how α-Synuclein expression in EECs responds to butyrate stimulation. Interestingly, we found that sodium butyrate (NaB) increases α-Synuclein mRNA expression, enhances Atg5-mediated autophagy (increased LC3B-II and decreased SQSTM1 (also known as p62) expression) in murine neuroendocrine STC-1 cells. Further, α-Synuclein mRNA was decreased by the inhibition of autophagy by using inhibitor bafilomycin A1 or by silencing Atg5 with siRNA. Moreover, the PI3K/Akt/mTOR pathway was significantly inhibited and cell apoptosis was activated by NaB. Conditioned media from NaB-stimulated STC-1 cells induced inflammation in SH-SY5Y cells. Collectively, NaB causes α-Synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Ácido Butírico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Camundongos , RNA Mensageiro/metabolismo
15.
Cell Death Dis ; 10(11): 814, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653828

RESUMO

DEAD box RNA helicase 17 (DDX17) is a transcriptional regulator of several transcription factors, which is more appreciated than its role in RNA metabolism. However, prognostic value and biofunction of DDX17 in HCC remain unclear. Illuminating the mechanism underlying the regulating HCC progression by DDX17 may contribute to therapeutic strategies. In our study, we report for the first time that DDX17 was overexpressed in HCC specimens by using The Cancer Genome Atlas (TCGA) and immunohistochemistry (IHC) and correlated to clinical pathological characteristics and patients' survival. In vitro, DDX17 was ascertained to alter HCC migratory and invasive capacities after overexpression and knockdown in HCC cell lines. Moreover, by performing co-immunoprecipitation (Co-IP) and GST-pull down assay, the physical association between DDX17 and Klf4 was discovered and validated. Additionally, DDX17 could modulate expressions of Klf4 target genes including E-cadherin, MMP2 by inhibiting the promoter activity. The potent correlation between DDX17 and Klf4 target gene expressions was further appraised by a same set of 30 HCC tissues. Besides, we discovered that DDX17 could not deploy its function in regulating Klf4 target gene expressions and HCC progression in Klf4-depletion condition. Intriguingly, DDX17 failed to interact with Klf4 once the zinc-finger domain was deleted and inhibited the binding of Klf4 on MMP-2 promoter. Collectively, our study enucleates novel mechanism of DDX17-mediated oncogenesis by suppressing the transcriptional activity of Klf4 thus is likely to be a therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , RNA Helicases DEAD-box/genética , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/genética , Metaloproteinase 2 da Matriz/genética , Antígenos CD/genética , Biomarcadores Tumorais/genética , Caderinas/genética , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas/genética
16.
Am J Transl Res ; 11(5): 3069-3080, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31217876

RESUMO

FOXO1, also known as FKHR, is a member of the Forkhead transcription factor family. Our previous study revealed that FOXO1 expression is significantly downregulated in pancreatic ductal adenocarcinoma (PDAC). However, our knowledge on the clinical significance of FOXO1 and its biological roles and associated mechanisms in PDAC tumorigenesis remains limited. In this study, we confirmed that FOXO1 is commonly downregulated in PDAC tissues, at both the mRNA and protein levels, compared to adjacent tissues. Furthermore, FOXO1 inhibited cell proliferation and tumor formation both in vitro and in vivo, and promoted pancreatic cancer cell invasion. Downregulation of FOXO1 resulted in enhanced Wnt/ß-catenin signaling activity, thereby promoting cell proliferation and epithelial-mesenchymal transition. The highly expressed miR-27a could potentially be used to target the 3'-UTR of FOXO1 in PDAC tissues to inhibit or at least slow down the invasion and proliferation of cancerous cells. Taken together, our findings suggest that the miR-27a/FOXO1/ß-catenin axis may serve as a promising therapeutic target in PDAC progression.

17.
J Exp Clin Cancer Res ; 38(1): 179, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027497

RESUMO

BACKGROUND: Recent studies have revealed that numerous oncogenic long non-coding RNAs (lncRNAs) play pivotal roles in pancreatic ductal adenocarcinoma (PDAC) progression, but little is known about tumor-suppressive lncRNAs in PDAC. This study was conducted to evaluate the function of tumor-suppressive LINC01197 in PDAC progression and investigate the detailed mechanisms. METHODS: LncRNA microarray was used to identify differentially expressed lncRNAs in FOXO1-overexpressing PANC1 cells. LINC01197 expression was evaluated by quantitative PCR, Northern blotting, and fluorescence in situ hybridization. The Cancer Genome Atlas database was used to analyze the prognostic role of LNC01197 in PDAC. A luciferase reporter assay was performed to confirm the interaction between LNC01197 and FOXO1. The biological function of LINC01197 was evaluated by colony formation assay in vitro and in an animal subcutaneous tumorigenesis experiment and Ki67 staining in vivo. RNA-pulldown, western blotting, RNA immunoprecipitation assay, and co-immunoprecipitation were further performed to determine the molecular mechanism of LNC01197 and ß-catenin in the Wnt pathway. RESULTS: We found that a FOXO1-related lncRNA, LINC01197, was significantly decreased in PDAC malignant tissues and that its low expression predicted poor prognosis. Moreover, LINC01197 was mainly localized in the nucleus and inhibited PDAC cell proliferation both in vitro and in vivo. Mechanistically, LINC01197 was found to bind to ß-catenin and inhibit Wnt/ß-catenin signaling activity by disrupting ß-catenin binding to TCF4 in PDAC cells. CONCLUSIONS: The novel FOXO1/LINC01197/ß-catenin axis was dysregulated during PDAC progression. Our study provides insight into the mechanisms of LINC01197 in PDAC and reveal a potential target for PDAC clinical therapy and prognostic prediction.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Proteína Forkhead Box O1/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , beta Catenina/genética , Adenocarcinoma/patologia , Adenoma/patologia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hibridização in Situ Fluorescente , Camundongos , Neoplasias Pancreáticas/patologia , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Neurotherapeutics ; 16(3): 741-760, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30815845

RESUMO

Parkinson's disease (PD) is strongly associated with life style, especially dietary habits, which have gained attention as disease modifiers. Here, we report a fasting mimicking diet (FMD), fasting 3 days followed by 4 days of refeeding for three 1-week cycles, which accelerated the retention of motor function and attenuated the loss of dopaminergic neurons in the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mice. Levels of brain-derived neurotrophic factor (BDNF), known to promote the survival of dopaminergic neurons, were increased in PD mice after FMD, suggesting an involvement of BDNF in FMD-mediated neuroprotection. Furthermore, FMD decreased the number of glial cells as well as the release of TNF-α and IL-1ß in PD mice, showing that FMD also inhibited neuro-inflammation. 16S and 18S rRNA sequencing of fecal microbiota showed that FMD treatment modulated the shifts in gut microbiota composition, including higher abundance of Firmicutes, Tenericutes, and Opisthokonta and lower abundance of Proteobacteria at the phylum level in PD mice. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry revealed that FMD modulated the MPTP-induced lower propionic acid and isobutyric acid, and higher butyric acid and valeric acid and other metabolites. Transplantation of fecal microbiota, from normal mice with FMD treatment to antibiotic-pretreated PD mice increased dopamine levels in the recipient PD mice, suggesting that gut microbiota contributed to the neuroprotection of FMD for PD. These findings demonstrate that FMD can be a new means of preventing and treating PD through promoting a favorable gut microbiota composition and metabolites.


Assuntos
Jejum , Microbioma Gastrointestinal , Transtornos Parkinsonianos/prevenção & controle , Animais , Western Blotting , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/análise , Corpo Estriado/química , Dopamina/análise , Dopamina/metabolismo , Ensaio de Imunoadsorção Enzimática , Jejum/fisiologia , Imunofluorescência , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/dietoterapia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Serotonina/análise , Serotonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Int Immunopharmacol ; 66: 19-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30419450

RESUMO

Astilbin (AST), a dihydro-flavonol glycoside, is a major bioactive ingredient in Astilbe thunbergii, Engelhardia roxburghiana, Smilax corbularia and Erythroxylum gonocladum, and has been shown to have anti-inflammatory, antioxidative and neuroprotective effects, suggesting potential therapeutic value in the treatment of Parkinson's disease (PD). We explored the neuroprotective effects of AST in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mice. Mice were administered with MPTP (30 mg/kg, i.p) daily for 5 days, to establish a subacute Parkinson's disease model, followed by daily treatment with AST or saline for 7 days. Pole and traction tests showed that AST ameliorated the impaired motor functions in MPTP-induced Parkinson's disease mice. High performance liquid chromatography analysis revealed that AST treatment prevented MPTP-induced decreases in striatal dopamine levels. Immunofluorescence assays showed that AST reduced the loss of dopaminergic neurons and the activation of microglia and astrocytes in the substantia nigra. Western blot analyses revealed that AST suppressed α-synuclein overexpression and activated PI3K/Akt in the striatum following MPTP treatment. AST also prevented the MPTP-induced reduction in total superoxide dismutase and glutathione activity in the striatum. AST exerts neuroprotective effects on MPTP-induced PD mice by suppressing gliosis, α-synuclein overexpression and oxidative stress, suggesting that AST could serve as a therapeutic drug to ameliorate PD.


Assuntos
Astrócitos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Flavonóis/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
20.
Biochem Biophys Res Commun ; 503(4): 2885-2891, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30119889

RESUMO

The DEAD-box-protein DDX5 is an ATP-dependent RNA helicase and also acts as co-activator that contributes to progression and metastasis of various tumours. However, its expression as well as prognostic roles of DDX5 in hepatocellular carcinoma (HCC) remain elusive. In this study, we investigated clinical significance and biological functions of DDX5 in HCC. Our results suggested that DDX5 showed overexpression at both transcriptional and translational levels in HCC tissues compared with adjacent normal tissues. Moreover, DDX5 expression was demonstrated to be correlated with tumor size (p < 0.001), N stage (p = 0.013), M stage (p = 0.006), tumor differentiation (p < 0.001) and American Joint Committee on Cancer (AJCC) stage (p = 0.001). Simultaneously, high DDX5 expression was found to be significantly correlated to worse outcome including Disease free survival (DFS) (p = 0.016) and overall survival (OS) (p = 0.032) according to Kaplan-Meier survival analysis. In vitro studies, it suggested that knockdown of DDX5 suppressed HCC cells migration, invasion and epithelial -to- mesenchymal transition (EMT) process. Depletion of DDX5 could promote HCC cells growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that PI3K/Akt signaling pathway obtained the highest enrichment. Furthermore, we found that knockdown of DDX5 decreased Akt as well as p-Akt (S473) expressions. Collectively, these findings suggested that DDX5 facilitated HCC cells growth via Akt signaling pathway. DDX5 played a crucial role in HCC proliferation and tumorigenesis and may be a novel prognostic marker and potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , RNA Helicases DEAD-box/metabolismo , Neoplasias Hepáticas/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinogênese , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Proliferação de Células , Células Cultivadas , RNA Helicases DEAD-box/análise , RNA Helicases DEAD-box/genética , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...