Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763774

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Assuntos
Autofagia , Bleomicina , Animais , Humanos , Masculino , Camundongos , Células A549 , Autofagia/efeitos dos fármacos , Bleomicina/farmacologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
2.
RSC Adv ; 14(17): 11758-11770, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623295

RESUMO

Graphene has attracted tremendous attention as a potential building block of modern high performance coating systems. Herein, we demonstrate a green method for making reduced oxide graphene (rGO) using the natural product rutin as the reducing agent. The rGO, with residual rutin on the surface to provide surface affinity, is used in the one-step fabrication of a nanocomposite of rGO and silica nanoparticles (SN) with a corrosion inhibitor, benzotriazole (BTA), loaded in situ. The ternary nanocomposite, BTA@SN-rGO, can be easily dispersed in water. It not only has a high inhibitor loading capacity (85.1 µg mg-1) but also can release the inhibitor in a controlled manner triggered by pH. Combining both the extraordinarily good barrier properties and smart nanocontainer features, BTA@SN-rGO was further incorporated into an epoxy latex to assemble an intelligent anticorrosion coating. The effective duration of the coating protection for steel was remarkably prolonged in different media, especially in acidic media. In addition to the barrier capability, smart self-healing of artificial damage to the modified coating films is also shown. Electrochemical impedance spectroscopy (EIS) was applied to monitor the failure process of different kinds of coatings. All the results confirm the synergy of the passive and active functions of the BTA@SN-rGO coating.

3.
Respir Res ; 24(1): 318, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105232

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive. METHODS: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis. Additionally, we explored the effect of TUFT1 on the cytoskeleton and illustrated the relationship between stress fiber and pulmonary fibrosis. RESULTS: Our results demonstrated a significant upregulation of TUFT1 in IPF and the bleomycin (BLM)-induced fibrosis model. Disruption of TUFT1 exerted inhibitory effects on pulmonary fibrosis in both in vivo and in vitro. TUFT1 facilitated the assembly of microfilaments in A549 and MRC-5 cells, with a pronounced association between TUFT1 and Neuronal Wiskott-Aldrich syndrome protein (N-WASP) observed during microfilament formation. TUFT1 can promote the phosphorylation of tyrosine residue 256 (Y256) of the N-WASP (pY256N-WASP). Furthermore, TUFT1 promoted transforming growth factor-ß1 (TGF-ß1) induced fibroblast activation by increasing nuclear translocation of pY256N-WASP in fibroblasts, while wiskostatin (Wis), an N-WASP inhibitor, suppressed these processes. CONCLUSIONS: Our findings suggested that TUFT1 plays a critical role in pulmonary fibrosis via its influence on stress fiber, and blockade of TUFT1 effectively reduces pro-fibrotic phenotypes. Pharmacological targeting of the TUFT1-N-WASP axis may represent a promising therapeutic approach for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Camundongos Endogâmicos C57BL , Fibras de Estresse/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...