Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540959

RESUMO

Silkie chicken, an important chicken breed with high medicinal and nutritional value, has a long history of being used as a dietary supplement in China. However, the compounds with health-promoting effects in Silkie chickens remain unclear. In the present study, we conducted a comprehensive analysis of metabolic and lipidomic profiles to identify the characteristic bioactive compounds in Silkie chickens, using a common chicken breed as control. The results showed that the levels of 13 metabolites including estradiol, four lipid subclasses including cardiolipin (CL), eight lipid molecules, and three fatty acids including docosahexaenoic acid (C22:6) were significantly increased in Silkie chickens, which have physiological activities such as resisting chronic diseases and improving cognition. These characteristic bioactive compounds have effects on meat quality characteristics, including improving its water-holding capacity and umami taste and increasing the content of aromatic compounds and phenols. The differentially expressed genes (DEGs) between the two chicken breeds revealed the regulatory network for these characteristic bioactive compounds. Fifteen DEGs, including HSD17B1, are involved in the synthesis of characteristic metabolites. Eleven DEGs, including ELOVL2, were involved in the synthesis and transport of characteristic lipids and fatty acids. In summary, we identified characteristic bioactive compounds in Silkie chickens, and analyzed their effects on meat quality characteristics. This study provided important insight into Silkie chicken meat as a functional food.

2.
Food Res Int ; 172: 113168, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689921

RESUMO

Eggs are nutritious and highly valued by consumers. However, egg flavor varies greatly among different hen breeds. The present study used gas chromatography-olfactometry-mass spectrometry-based volatilomics to identify and compare volatile compounds in Taihe black-boned silky fowl (TS) and Hy-line Brown (HL) egg yolks. In addition, the relationships between the levels of different metabolites and lipids and flavor-associated differences were investigated using multiomics. Twenty-eight odorants in total were identified; among them, the levels of 3-methyl-butanal, 1-octen-3-ol, 2-pentylfuran, and (E, E)-2,4-decadienal differed significantly (P < 0.05) between TS and HL egg yolks. The difference in flavor compounds results in TS egg yolks having a stronger overall odor and flavor and a higher acceptance level than HL egg yolks. Metabolomic analysis revealed that 112 metabolites in the egg yolks were significantly different between the two breeds. Furthermore, these different metabolites in the egg yolks of both breeds were significantly enriched in phenylalanine, tyrosine, and tryptophan biosynthesis pathways and phenylalanine metabolism, alanine, aspartate, and glutamate metabolism pathways (P < 0.05), as identified by both metabolite set enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Lipidomic analysis revealed significant differences in the lipid subclasses, lipid molecules, and fatty acid profiles between the egg yolks from the two breeds. As a result, 48 lipid molecules had variable influence in projection values > 1 based on the partial least squares regression model, which may play a role in the differences in aroma characteristics between the two breeds through oxidative degradation of fatty acids. Our study revealed the metabolite, lipid, and volatility profiles of TS and HL egg yolks and may provide an important basis for improving egg flavor to satisfy various consumer preferences.


Assuntos
Galinhas , Multiômica , Animais , Feminino , Carne , Ovos , Ácidos Graxos
3.
R Soc Open Sci ; 10(4): 221313, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035296

RESUMO

Genes with sex-biased expression are thought to underlie sexually dimorphic phenotypes and are therefore subject to different selection pressures in males and females. Many authors have proposed that sexual conflict leads to the evolution of sex-biased expression, which allows males and females to reach separate phenotypic and fitness optima. The selection pressures associated with domestication may cause changes in population architectures and mating systems, which in turn can alter their direction and strength. We compared sex-biased expression and genetic signatures in wild and domestic ducks (Anas platyrhynchos), and observed changes of sexual selection and identified the genomic divergence affected by selection forces. The extent of sex-biased expression in both sexes is positively correlated with the level of both d N /d S and nucleotide diversity. This observed changing pattern may mainly be owing to relaxed genetic constraints. We also demonstrate a clear link between domestication and sex-biased evolutionary rate in a comparative framework. Decreased polymorphism and evolutionary rate in domesticated populations generally matched life-history phenotypes known to experience artificial selection. Taken together, our work suggests the important implications of domestication in sex-biased evolution and the roles of artificial selection and sexual selection for shaping the diversity and evolutionary rate of the genome.

4.
Poult Sci ; 102(5): 102242, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931071

RESUMO

High dropping moisture (DM) in poultry production has deleterious effects on the environment, feeding cost, and public health of people and animals. To explore the contributing genetic components, we classified DM of 67-wk-old Rhode Island Red (RIR) hens at 4 different levels and evaluated the underlying genetic heritability. We found the heritability of DM to be 0.219, indicating a moderately heritable trait. We then selected chickens with the highest and lowest DM levels. Using transcriptome, we only detected 12 differentially expressed genes (DEGs) between these 2 groups from the spleen, and 1,507 DEGs from intestinal tissues (jejunum and cecum). The low number of DEGs observed in the spleen suggests that differing moisture levels are not attributed to pathogenic infection. Fourteen of the intestinal high expressed genes are associated with water-salt metabolism (WSM). We also investigated the gut microbial composition by 16S rRNA gene amplicon sequencing. Six different microbial operational taxonomic units (OTUs) (Cetobacterium, Sterolibacterium, Elusimicrobium, Roseburia, Faecalicoccus, and Megamonas) between the 2 groups from jejunum and cecum are potentially biomarkers related to DM levels. Our results identify a genetic component to chicken DM, and can guide breeding strategies.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Feminino , Galinhas/genética , Galinhas/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Ceco/microbiologia , Perfilação da Expressão Gênica/veterinária , Transcriptoma
5.
Animals (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978553

RESUMO

Epigenetic modifications play an important role in regulating animal adaptation to external stress. To explore how DNA methylation regulates the expression levels of related genes during forced molting (FM) of laying hens, the hypothalamus and ovary tissues were analyzed at five periods using Whole-Genome Bisulfite Sequencing. The results show that methylation levels fluctuated differently in the exon, intron, 5'UTR, 3'UTR, promoter, and intergenic regions of the genome during FM. In addition, 16 differentially methylated genes (DMGs) regulating cell aging, immunity, and development were identified in the two reversible processes of starvation and redevelopment during FM. Comparing DMGs with differentially expressed genes (DEGs) obtained in the same periods, five hypermethylated DMGs (DSTYK, NKTR, SMOC1, SCAMP3, and ATOH8) that inhibited the expression of DEGs were found. Therefore, DMGs epigenetically modify the DEGs during the FM process of chickens, leading to the rapid closure and restart of their reproductive function and a re-increase in the egg-laying rate. Therefore, this study further confirmed that epigenetic modifications could regulate gene expression during FM and provides theoretical support for the subsequent optimization of FM technology.

6.
Front Genet ; 13: 971588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338955

RESUMO

Structural variants (SVs) are one of the main sources of genetic variants and have a greater impact on phenotype evolution, disease susceptibility, and environmental adaptations than single nucleotide polymorphisms (SNPs). However, SVs remain challenging to accurately type, with several detection methods showing different limitations. Here, we explored SVs from 10 different chickens using PacBio technology and detected 49,501 high-confidence SVs. The results showed that the PacBio long-read detected more SVs than Illumina short-read technology genomes owing to some SV sites on chromosomes, which are related to chicken growth and development. During chicken domestication, some SVs beneficial to the breed or without any effect on the genomic function of the breed were retained, whereas deleterious SVs were generally eliminated. This study could facilitate the analysis of the genetic characteristics of different chickens and provide a better understanding of their phenotypic characteristics at the SV level, based on the long-read sequencing method. This study enriches our knowledge of SVs in chickens and improves our understanding of chicken genomic diversity.

7.
Genomics ; 114(6): 110515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306957

RESUMO

Piao chicken, a Chinese indigenous rumpless chicken breed, lacks pygostyle, caudal vertebra, uropygial gland and tail feathers. The rumplessness in Piao chicken presents an autosomal dominant inheritance pattern. However, the molecular genetic mechanisms underlying the rumplessness in Piao chicken remains unclear. In this study, whole-genome resequencing was performed for 146 individuals from 10 chicken breeds, including 9 tailed chicken breeds and Piao rumpless breed. Tailbone CT scan for Piao chickens and WL chickens, revealed that some Piao chicken tails were normal in number, and for a few Piao chickens tail length and tail bone numbers were between the rumpless and the normal tailed chickens. The results showed that the rumpless phenotype has not been completely fixed in Piao chicken breed. Using selection signature analysis and structural variation detection, we found a 4174 bp deletion located in the upstream region of IRX1 gene on chromosome 2 related to rumpless phenotype. Structural variation genotyping showed that the deletion was present in all 32 rumpless Piao chickens (del/del, wild/del) and absent from all 112 tailed chickens included in the dataset for the other 9 breeds and 2 tailed Piao chickens (wild/wild). In summary, all rumpless Piao chickens tested here carry this deletion mutation, to show a complete linkage association with rumplessness trait. We suggested that the 4174 bp deletion could be causative for rumpless phenotype in Piao chicken since this is the only mutation to show the complete linkage disequilibrium with rumplessness on whole genome level across all of 146 chickens from the 10 breeds. This study could facilitate a better understanding of the genetic characteristics of Piao chicken.


Assuntos
Galinhas , Animais , Galinhas/genética
8.
Animals (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565645

RESUMO

The regulation of gene expression is a complex process involving organism function and phenotypic diversity, and is caused by cis- and trans- regulation. While prior studies identified the regulatory pattern of the autosome rewiring in hybrids, the role of gene regulation in W sex chromosomes is not clear due to their degradation and sex-limit expression. Here, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibited broad differences in gender-related traits, and assessed the expression of the genes on the W chromosome to disentangle the contribution of cis- and trans-factors to expression divergence. We found that female-specific selection does not have a significant effect on W chromosome gene-expression patterns. For different tissues, there were most parental divergence expression genes in muscle, and also more heterosis compared with two other tissues. Notably, a broader pattern of trans regulation in the W chromosome was observed, which is consistent with autosomes. Taken together, this work describes the regulatory divergence of W-linked genes between two contrasting breeds and indicates sex chromosomes have a unique regulation and expression mechanism.

9.
Front Genet ; 13: 833132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401685

RESUMO

Bone health is particularly important for high-yielding commercial layer chickens. The keel of poultry is an extension of the abdomen side of the sternum along the sagittal plane and is one of the most important bones. In this study, the keel phenotype of White Leghorns laying hen flocks showed significant individual differences. To clarify its genetic mechanism, we first estimated the heritability of keel bend (KB) in White Leghorn, recorded the production performance of the chicken flock, examined the blood biochemical indexes and bone quality in KB and keel normal (KN) chickens, and performed whole-genome pooled sequencing in KB and KN chickens. We then performed selection elimination analysis to determine the genomic regions that may affect the keel phenotypes. The results show that KB is a medium heritability trait. We found that cage height had a significant effect on the KB (p < 0.01). At 48 weeks, there were significant differences in the number of eggs, the number of normal eggs, and eggshell strength (p < 0.05). The content of parathyroid hormone was lower (p < 0.01) and that of calcitonin was higher (p < 0.01) in KB chickens than in KN chickens. The differences in bone mineral density, bone strength, and bone cortical thickness of the humerus and femur were extremely significant (p < 0.01), with all being lower in KB chickens than in KN chickens. In addition, the bones of KB chickens contained more fat organization. A total of 128 genes were identified in selective sweep regions. We identified 10 important candidate genes: ACP5, WNT1, NFIX, CNN1, CALR, FKBP11, TRAPPC5, MAP2K7, RELA, and ENSGALG00000047166. Among the significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways found, we identifed two bone-related pathways, one involving "osteoclast differentiation" and the other the "MAPK signaling pathway." These results may help us better understand the molecular mechanism of bone traits in chickens and other birds and provide new insights for the genetic breeding of chickens.

10.
J Appl Microbiol ; 132(3): 2306-2322, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34709709

RESUMO

AIM: To evaluation the probiotic potential of Lactobacillus plantarum strain RW1 isolated from healthy dogs for its further utilization as a dietary supplement for dogs. METHODS AND RESULTS: This study aimed to evaluate the probiotic potential of L. plantarum strain RW1 isolated from canine faeces. After confirming by conventional and then by 16S rRNA sequencing, the identified strain RW1 was in vitro screened for its survivability in simulated gastrointestinal conditions, low pH, bile salts and adhesion to gut epithelial tissues, growth inhibitory effects on common pathogens and anti-inflammatory potential by measuring the mRNA expression level of IL-6, IL-8, IL-1ß in Salmonella-infected MODE-K cells. Furthermore, the effects on epithelial barrier function and host defensin peptide (beta-defensin 3) was studied by measuring the mRNA expression level of tight junction protein (occludin) and beta-defensin 3 in MODE-K cells. The strain RW1 showed a considerable potential to survive in simulated gastrointestinal environmental conditions, low pH and high bile salt concentrations along with good adhesion to MODE-K cell line. Pathogenic bacterial growth and their adhesion to MODE-K cell line were significantly inhibited by the strain RW1. Real-time PCR analyses demonstrated that the strain RW1 inhibited Salmonella-induced pro-inflammatory cytokines (IL-6, IL-8 and IL-1ß) production and reinforced the expression of tight junction protein (occludin). The strain RW1 did not induce mRNA expression of beta-defensin 3. CONCLUSION: Based on in vitro results, the strain RW1 has the potential to be used as a probiotic supplement in dogs. However, further study involving in vivo health effects is needed. SIGNIFICANCE AND IMPACT OF THE STUDY: Antibiotics have many side effects and nowadays the probiotics are considered as a potential alternative to antibiotics. This study evaluates the probiotic potential of dog isolated L. plantarum strain RW1 to use it as a dietary supplement in dogs feeding to control infectious diseases.


Assuntos
Lactobacillus plantarum , Probióticos , Animais , Aderência Bacteriana , Ácidos e Sais Biliares/metabolismo , Cães , Fezes/microbiologia , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
11.
Genes (Basel) ; 12(11)2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34828373

RESUMO

Molting in birds provides us with an ideal genetic model for understanding aging and rejuvenation since birds present younger characteristics for reproduction and appearance after molting. Forced molting (FM) by fasting in chickens causes aging of their reproductive system and then promotes cell redevelopment by providing water and feed again. To reveal the genetic mechanism of rejuvenation, we detected blood hormone indexes and gene expression levels in the hypothalamus and ovary of hens from five different periods during FM. Three hormones were identified as participating in FM. Furthermore, the variation trends of gene expression levels in the hypothalamus and ovary at five different stages were found to be basically similar using transcriptome analysis. Among them, 45 genes were found to regulate cell aging during fasting stress and 12 genes were found to promote cell development during the recovery period in the hypothalamus. In addition, five hub genes (INO80D, HELZ, AGO4, ROCK2, and RFX7) were identified by WGCNA. FM can restart the reproductive function of aged hens by regulating expression levels of genes associated with aging and development. Our study not only enriches the theoretical basis of FM but also provides insights for the study of antiaging in humans and the conception mechanism in elderly women.


Assuntos
Envelhecimento/genética , Proteínas Aviárias/genética , Galinhas/fisiologia , Muda , Animais , Senescência Celular , Galinhas/sangue , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hormônios/sangue , Hipotálamo/química , Ovário/química
12.
BMC Genomics ; 22(1): 610, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376144

RESUMO

BACKGROUND: Since the domestication of chicken, various breeds have been developed for food production, entertainment, and so on. Compared to indigenous chicken breeds which generally do not show elite production performance, commercial breeds or lines are selected intensely for meat or egg production. In the present study, in order to understand the molecular mechanisms underlying the dramatic differences of egg number between commercial egg-type chickens and indigenous chickens, we performed a genome-wide association study (GWAS) in a mixed linear model. RESULTS: We obtained 148 single nucleotide polymorphisms (SNPs) associated with egg number traits (57 significantly, 91 suggestively). Among them, 4 SNPs overlapped with previously reported quantitative trait loci (QTL), including 2 for egg production and 2 for reproductive traits. Furthermore, we identified 32 candidate genes based on the function of the screened genes. These genes were found to be mainly involved in regulating hormones, playing a role in the formation, growth, and development of follicles, and in the development of the reproductive system. Some genes such as NELL2 (neural EGFL like 2), KITLG (KIT ligand), GHRHR (Growth hormone releasing hormone receptor), NCOA1 (Nuclear receptor coactivator 1), ITPR1 (inositol 1, 4, 5-trisphosphate receptor type 1), GAMT (guanidinoacetate N-methyltransferase), and CAMK4 (calcium/calmodulin-dependent protein kinase IV) deserve our attention and further study since they have been reported to be closely related to egg production, egg number and reproductive traits. In addition, the most significant genomic region obtained in this study was located at 48.61-48.84 Mb on GGA5. In this region, we have repeatedly identified four genes, in which YY1 (YY1 transcription factor) and WDR25 (WD repeat domain 25) have been shown to be related to oocytes and reproductive tissues, respectively, which implies that this region may be a candidate region underlying egg number traits. CONCLUSION: Our study utilized the genomic information from various chicken breeds or populations differed in the average annual egg number to understand the molecular genetic mechanisms involved in egg number traits. We identified a series of SNPs, candidate genes, or genomic regions that associated with egg number, which could help us in developing the egg production trait in chickens.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
13.
Animals (Basel) ; 11(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073794

RESUMO

We investigated the efficacy of a single bacterium strain, Bacillus subtilis (B. subtilis) YW1, on the performance, morphology, cecal microbiota, and intestinal barrier function of laying hens. A total of 216 28-week-old Hy-line Brown laying hens were divided into three dietary treatment groups, with six replicates of 12 birds each for 4 weeks. The control group (Ctr) was fed a basal diet and the treatment groups, T1 and T2, were fed a basal diet supplemented with B. subtilis at a dose rate of 5 × 108 CFU/kg and 2.5 × 109 CFU/kg, respectively. Dietary supplementation with B. subtilis did not significantly affect overall egg production in both groups, with no obvious changes in average egg weight and intestine morphology. B. subtilis administration also improved the physical barrier function of the intestine by inducing significantly greater expression levels of the tight junction protein occludin in T1 (p = 0.07) and T2 (p < 0.05). Further, supplementation with B. subtilis effectively modulated the cecal microbiota, increasing the relative level of beneficial bacteria at the genus level (e.g., Bifidobacterium p < 0.05, Lactobacillus p = 0.298, Bacillus p = 0.550) and decreasing the level of potential pathogens (e.g., Fusobacterium p < 0.05, Staphylococcus p < 0.05, Campylobacter p = 0.298). Overall, B. subtilis YW1 supplementation cannot significantly improve the egg production; however, it modulated the cecal microbiota towards a healthier pattern and promoted the mRNA expression of the tight junction protein occludin in laying hens, making B. subtilis YW1 a good probiotic candidate for application in the poultry industry, and further expanding the resources of strains of animal probiotics.

14.
Arch Virol ; 166(6): 1599-1605, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33755802

RESUMO

Pigeon paramyxovirus-1 (PPMV-1) is a strain of Newcastle disease virus (NDV) that has adapted to infect pigeons and poses a constant threat to the commercial poultry industry. Early detection via rapid and sensitive methods, along with timely preventative and mitigating actions, is important for reducing the spread of PPMV-1. Here, we report the development of a TaqMan loop-mediated isothermal amplification assay (TaqMan-LAMP) for rapid and specific detection of PPMV-1 based on the F gene. This system makes use of six novel primers and a TaqMan probe that targets nine distinct regions of the F gene that are highly conserved among PPMV-1 isolates. The results showed that the limit of detection was 10 copies µL-1 for PPMV-1 cDNA and 0.1 ng for PPMV-1 RNA. The reaction was completed within 25 min and was thus faster than conventional RT-PCR. Moreover, no cross-reactions with similar viruses or with peste des petits ruminants virus (PPRV) or NDV LaSota vaccine strains were observed under the same conditions. To evaluate the applicability of the assay, the TaqMan-LAMP assay and a commercial RT-PCR assay were compared using 108 clinical samples, and the concordance rate between two methods was found to be 96.3%. The newly developed PPMV-1 TaqMan-LAMP assay can therefore be used for simple, efficient, rapid, specific, and sensitive diagnosis of PPMV-1 infections.


Assuntos
Técnicas de Diagnóstico Molecular/veterinária , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/veterinária , Animais , Columbidae , Fezes/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral , Sensibilidade e Especificidade , Fatores de Tempo
15.
Genes (Basel) ; 13(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052428

RESUMO

Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.


Assuntos
Proteínas Aviárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios/sangue , Hipotálamo/metabolismo , Muda/fisiologia , Ovário/metabolismo , Transcriptoma , Envelhecimento , Animais , Proteínas Aviárias/genética , Galinhas , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Feminino , Perfilação da Expressão Gênica , Hipotálamo/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento
16.
Transbound Emerg Dis ; 68(3): 1097-1110, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32799433

RESUMO

COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has rapidly spread to 216 countries and territories since first outbreak in December of 2019, posing a substantial economic losses and extraordinary threats to the public health worldwide. Although bats have been suggested as the natural host of SARS-CoV-2, transmission chains of this virus, role of animals during cross-species transmission, and future concerns remain unclear. Diverse animal coronaviruses have extensively been studied since the discovery of avian coronavirus in 1930s. The current article comprehensively reviews and discusses the current understanding about animal coronaviruses and SARS-CoV-2 for their emergence, transmission, zoonotic potential, alteration of tissue/host tropism, evolution, status of vaccines and surveillance. This study aims at providing guidance for control of COVID-19 and preventative strategies for possible future outbreaks of zoonotic coronavirus via cross-species transmission.


Assuntos
COVID-19/virologia , Infecções por Coronaviridae/veterinária , Coronavirus/classificação , SARS-CoV-2/genética , Animais , Infecções por Coronaviridae/virologia , Humanos
17.
Front Genet ; 11: 543294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101376

RESUMO

Following chicken domestication, diversified chicken breeds were developed by both natural and artificial selection, which led to the accumulation of abundant genetic and phenotypic variations, making chickens an ideal genetic research model. To better understand the genetic structure of chicken breeds under different selection pressures, we genotyped various chicken populations with specific selection targets, including indigenous, commercial, gamecock, and wild ancestral chickens, using the 600K SNP array. We analyzed the population structure, genetic relationships, run of homozygosity (ROH), effective population number (Ne), and other genetic parameters. The wild ancestral population, red junglefowl (RJF), possessed the highest diversity, in comparison with all other domesticated populations, which was supported by linkage disequilibrium decay (LD), effective population number, and ROH analyses. The gamecock breeds, which were subjected to stronger male-biased selection for fighting-related traits, also presented higher variation than the commercial and indigenous breeds. Admixture analysis also indicated that game breed is a relatively independent branch of Chinese local breeds. Following intense selection for reproductive and productive traits, the commercial lines showed the least diversity. We also observed that the European local chickens had lower genetic variation than the Chinese local breeds, which could be attributed to the shorter history of the European breed. ROH were present in a breed specific manner and 191 ROH island were detected on four groups (commercial, local, game and wild chickens). These ROH islands were involved in egg production, growth and silky feathers and other traits. Moreover, we estimated the effective sex ratio of these breeds to demonstrate the change in the ratio of the two sexes. We found that commercial chickens had a greater sex imbalance between females and males. The commercial lines showed the highest female-to-male ratios. Interestingly, RJF comprised a greater proportion of males than females. Our results show the population genetics of chickens under selection pressures, and can aid in the development of better conservation strategies for different chicken breeds.

18.
Front Genet ; 11: 806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849807

RESUMO

Dropping moisture (DM) refers to the water content of feces. High DM in chickens could be disadvantageous to pathogen control and fecal treatment in chicken farms. DM can be affected by environment, nutrition, disease, and genetics. In the present study, significant individual differences were presented in the DM of Rhode Island Red (RIR) chicken population, indicating that genetics could contribute to DM in the chickens. Subsequently, we estimated the genetic parameters of DM and conducted a genome-wide association study (GWAS) to find the potential genomic regions related to DM. The results showed that the heritability of DM ranged from 0.25 to 0.32. Furthermore, 11 significant loci on chromosome 7 were found to be associated with DM levels by the GWAS. The SNP rs15833816 within the COL6A3 gene was the most significant SNP related to DM. Hens carrying the G allele including GA and GG produced higher DM (P < 0.01) levels than those carrying the other genotype AA. Our results showed that DM is a medium-inheritable trait and that COL6A3 could be a potential candidate gene that regulates DM level in chickens.

19.
Sci Rep ; 10(1): 6855, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32300190

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
BMC Genomics ; 20(1): 933, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805870

RESUMO

BACKGROUND: Gene expression variation is a key underlying factor influencing phenotypic variation, and can occur via cis- or trans-regulation. To understand the role of cis- and trans-regulatory variation on population divergence in chicken, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibit major differences in body size and reproductive traits, and used them to determine the degree of cis versus trans variation in the brain, liver, and muscle tissue of male and female 1-day-old specimens. RESULTS: We provided an overview of how transcriptomes are regulated in hybrid progenies of two contrasting breeds based on allele specific expression analysis. Compared with cis-regulatory divergence, trans-acting genes were more extensive in the chicken genome. In addition, considerable compensatory cis- and trans-regulatory changes exist in the chicken genome. Most importantly, stronger purifying selection was observed on genes regulated by trans-variations than in genes regulated by the cis elements. CONCLUSIONS: We present a pipeline to explore allele-specific expression in hybrid progenies of inbred lines without a specific reference genome. Our research is the first study to describe the regulatory divergence between two contrasting breeds. The results suggest that artificial selection associated with domestication in chicken could have acted more on trans-regulatory divergence than on cis-regulatory divergence.


Assuntos
Encéfalo/metabolismo , Galinhas/classificação , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Fígado/metabolismo , Músculos/metabolismo , Animais , Animais Recém-Nascidos , Tamanho Corporal , Cruzamento , Galinhas/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Masculino , Locos de Características Quantitativas , Seleção Genética , Análise de Sequência de RNA/veterinária , Sequenciamento Completo do Genoma/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...