Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38544005

RESUMO

With the development of the Internet of Things (IoT) technology, massive amounts of sensor data in applications such as fire monitoring need to be transmitted to edge servers for timely processing. However, there is an energy-hole phenomenon in transmitting data only through terrestrial multi-hop networks. In this study, we focus on the data collection task in an unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) network, where a UAV is deployed as the mobile data collector for the ground sensor nodes (SNs) to ensure high information freshness. Meanwhile, the UAV is equipped with an edge server for data caching. We first establish a rigorous mathematical model in which the age of information (AoI) is used as a measure of information freshness, related to both the data collection time and the UAV's flight time. Then a mixed-integer non-convex optimization problem is formulated to minimize the peak AoI of the collected data. To solve the problem efficiently, we propose an iterative two-step algorithm named the AoI-minimized association and trajectory planning (AoI-MATP) algorithm. In each iteration, the optimal SN-collection point (CP) associations and CP locations for the parameter ε are first obtained by the affinity propagation clustering algorithm. The optimal UAV trajectory is found using an improved elite genetic algorithm. Simulation results show that based on the optimized ε, the AoI-MATP algorithm can achieve a balance between data collection time and flight time, reducing the peak AoI of the collected data.

2.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339674

RESUMO

Wireless Sensor Networks (WSNs) have emerged as an efficient solution for numerous real-time applications, attributable to their compactness, cost-effectiveness, and ease of deployment. The rapid advancement of 5G technology and mobile edge computing (MEC) in recent years has catalyzed the transition towards large-scale deployment of WSN devices. However, the resulting data proliferation and the dynamics of communication environments introduce new challenges for WSN communication: (1) ensuring robust communication in adverse environments and (2) effectively alleviating bandwidth pressure from massive data transmission. In response to the aforementioned challenges, this paper proposes a semantic communication solution. Specifically, considering the limited computational and storage resources of WSN devices, we propose a flexible Attention-based Adaptive Coding (AAC) module. This module integrates window and channel attention mechanisms, dynamically adjusts semantic information in response to the current channel state, and facilitates adaptation of a single model across various Signal-to-Noise Ratio (SNR) environments. Furthermore, to validate the effectiveness of this approach, the paper introduces an end-to-end Joint Source Channel Coding (JSCC) scheme for image semantic communication, employing the AAC module. Experimental results demonstrate that the proposed scheme surpasses existing deep JSCC schemes across datasets of varying resolutions; furthermore, they validate the efficacy of the proposed AAC module, which is capable of dynamically adjusting critical information according to the current channel state. This enables the model to be trained over a range of SNRs and obtain better results.

3.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679402

RESUMO

The flower pollination algorithm (FPA) is a novel heuristic optimization algorithm inspired by the pollination behavior of flowers in nature. However, the global and local search processes of the FPA are sensitive to the search direction and parameters. To solve this issue, an improved flower pollination algorithm based on cosine cross-generation differential evolution (FPA-CCDE) is proposed. The algorithm uses cross-generation differential evolution to guide the local search process, so that the optimal solution is achieved and sets cosine inertia weights to increase the search convergence speed. At the same time, the external archiving mechanism and the adaptive adjustment of parameters realize the dynamic update of scaling factor and crossover probability to enhance the population richness as well as reduce the number of local solutions. Then, it combines the cross-generation roulette wheel selection mechanism to reduce the probability of falling into the local optimal solution. In comparing to the FPA-CCDE with five state-of-the-art optimization algorithms in benchmark functions, we can observe the superiority of the FPA-CCDE in terms of stability and optimization features. Additionally, we further apply the FPA-CCDE to solve the robot path planning issue. The simulation results demonstrate that the proposed algorithm has low cost, high efficiency, and attack resistance in path planning, and it can be applied to a variety of intelligent scenarios.


Assuntos
Algoritmos , Polinização , Simulação por Computador , Flores
4.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459039

RESUMO

In this work, we focus on a drone-fleet-enabled package delivery scenario, in which multiple drones fly from a start point and cooperatively deliver packages to the ground users in the presence of a number of no-fly zones (NFZs). We first mathematically model the package delivery scenario in a rigorous manner. Then, a package value maximization problem is established to optimize the flight trajectory and package delivery under the constraints of drone load and collision as well as NFZs. The formulated problem is a highly challenging mixed-integer non-convex problem. To facilitate solving it, we transform the formulated problem into an equivalent problem with special structure by using some appropriate transformations, based on which a low-complexity algorithm with favorable performance is developed using the penalty convex-concave procedure method. Finally, numerical results demonstrate the superiority of the proposed solution.


Assuntos
Algoritmos , Dispositivos Aéreos não Tripulados
5.
Entropy (Basel) ; 24(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35455200

RESUMO

Full-duplex (FD) transmission holds a great potential of improving the sum data rate of wireless communication systems. However, the self-interference introduced by the full-duplex transmitter brings a big challenge to enhance the energy efficiency. This paper investigates the power allocation problem in a full-duplex two-way (FDTW) communication network over an OFDM channel, aiming at improving the sum data rate and energy efficiency. We first characterize the sum rate and energy efficiency achieved in a single-carrier FDTW system. The optimal transmit power that achieves the maximal sum data rate is presented. The energy efficiency maximization problem is solved by using fractional programming. Then we further formulate sum rate and energy efficiency maximization problem in a multi-subcarrier FDTW system. In particular, the sub-optimal transmit power allocation which achieves a decent sum rate improvement is found by using a proposed iterative algorithm. By combining the iterative algorithm and fractional programming, we further maximize the energy efficiency of the multi-subcarrier system. With our proposed algorithm, we can easily obtain an optimal transmit power that approximates the global optimal solution. Simulation results show that using the obtained optimal transmit power allocation algorithm can significantly improve the sum rate and energy efficiency in both single-carrier and multi-subcarrier systems.

6.
Entropy (Basel) ; 24(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205495

RESUMO

Motivated by big data applications in the Internet of Things (IoT), abundant information arrives at the fusion center (FC) waiting to be processed. It is of great significance to ensure data freshness and fidelity simultaneously. We consider a wireless sensor network (WSN) where several sensor nodes observe one metric and then transmit the observations to the FC using a selection combining (SC) scheme. We adopt the age of information (AoI) and minimum mean square error (MMSE) metrics to measure the data freshness and fidelity, respectively. Explicit expressions of average AoI and MMSE are derived. After that, we jointly optimize the two metrics by adjusting the number of sensor nodes. A closed-form sub-optimal number of sensor nodes is proposed to achieve the best freshness and fidelity tradeoff with negligible errors. Numerical results show that using the proposed node number designs can effectively improve the freshness and fidelity of the transmitted data.

7.
Sensors (Basel) ; 17(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098772

RESUMO

Tracking people's behaviors is a main category of cyber physical social sensing (CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article, we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility, we target tracking people's access behaviors in Wi-Fi networks, which has drawn a lot of interest from the academy and industry recently. Existing methods used for acquiring access traces either provide very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive, flexible, and simplified manner to overcome above limitations. We have implemented the prototype on the off-the-shelf personal computer, and performed real-world deployment experiments. The experimental results show that the method is feasible, and people's access behaviors can be correctly tracked within a one-second delay.

8.
Sensors (Basel) ; 16(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598172

RESUMO

Classification of target microwave images is an important application in much areas such as security, surveillance, etc. With respect to the task of microwave image classification, a recognition algorithm based on aspect-aided dynamic non-negative least square (ADNNLS) sparse representation is proposed. Firstly, an aspect sector is determined, the center of which is the estimated aspect angle of the testing sample. The training samples in the aspect sector are divided into active atoms and inactive atoms by smooth self-representative learning. Secondly, for each testing sample, the corresponding active atoms are selected dynamically, thereby establishing dynamic dictionary. Thirdly, the testing sample is represented with ℓ 1 -regularized non-negative sparse representation under the corresponding dynamic dictionary. Finally, the class label of the testing sample is identified by use of the minimum reconstruction error. Verification of the proposed algorithm was conducted using the Moving and Stationary Target Acquisition and Recognition (MSTAR) database which was acquired by synthetic aperture radar. Experiment results validated that the proposed approach was able to capture the local aspect characteristics of microwave images effectively, thereby improving the classification performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...