Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 865: 161124, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581272

RESUMO

Algal extracellular organic matter (EOM) metabolites exert considerable impact on the carbon (C), nitrogen (N), and phosphorus (P) cycles mediated by attached bacteria. Field investigations were conducted in two ponds to explore the relationship among EOM metabolites from Microcystis and Dolichospermum, co-occurring microbes, and nutrient recycling from April 2021 to December 2021. Microcystis blooms primarily produced more complex bound EOM (bEOM) metabolites with many amino acid components, which facilitated bacterial colonization and provided sufficient substrates for ammonification. Meanwhile, high abundances of dissimilatory nitrate reduction to ammonium genes from co-occurring microbes such as Rhodobacter have demonstrated their strong N retention ability. Metabolic products of bEOM from Microcystis comprise a large number of organic acids that can solubilize non-bioavailable P. All these factors have collectively resulted in the increase of all fractions of N and P, except for nitrate (NO3--N) in the water column. In contrast, the EOM metabolite from Dolichospermum was simple, coupled with high abundance of functional genes of α-glucosidase, and produced small molecular substances fueling denitrification. The metabolic products of EOM from Dolichospermum include abundant N-containing substances dominated by heterocyclic substances, suggesting that the metabolic products of Dolichospermum are not conducive to N regeneration and retention. Therefore, the metabolic products of EOM from Microcystis triggered a shift in the attached microbial community and function toward C, N, and P recycling with close mutual coupling. Acquisition of N and P in Dolichospermum is dependent on itself based on N fixation and organic P hydrolysis capacity. This study provides a new understanding of the contribution of algal EOM to the nutrient cycle.


Assuntos
Cianobactérias , Microcystis , Microcystis/química , Nitrogênio/química , Nitratos , Carbono/química , Fósforo , Compostos Orgânicos/química
2.
Sci Total Environ ; 858(Pt 3): 160017, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370792

RESUMO

Nitrogen accumulation has become one of the greatest unresolved challenges restricting the development of aquaculture worldwide. In recirculating aquaculture system (RAS), lack of organic matter (OM) and sensitive organisms makes it difficult to apply efficient denitrifying technology, thus leading to a high nitrate­nitrogen (NO3--N) accumulation. In contrast, excess OM accumulation in intensive aquaculture pond sediments is associated with dissolved oxygen depletion and ammonium­nitrogen (NH4+-N) accumulation in the sediments. Based on the opposing effects of OM on the nitrogen accumulation in RAS and intensive aquaculture ponds, this study assessed the feasibility of simultaneously reducing NO3--N discharge from RAS and controlling NH4+-N accumulation in intensive aquaculture ponds by in situ diffusing RAS tailwater containing NO3--N into intensive aquaculture pond sediments. The results showed that NO3--N diffusion strategy improved the native sediment denitrification capacity, thus increasing NO3--N removal efficiency from RAS tailwater and significantly decreasing the NH4+-N concentration in interstitial water and the total organic carbon content in intensive aquaculture pond sediments. High-throughput sequencing and quantitative real-time polymerase chain reaction (qPCR) results revealed that NO3--N addition significantly increased both nitrifying bacteria and denitrifying bacteria abundance. These results implied that NO3--N diffusion strategy could effectively stimulate microbial decomposition of OM, thus relieving the hypoxia limitation of sediment nitrification. Overall, this study offers a feasible method for simultaneous reduction of NO3--N from RAS tailwater and NH4+-N in intensive aquaculture ponds with low cost and high efficiency.


Assuntos
Compostos de Amônio , Nitratos , Nitrogênio
3.
Theranostics ; 10(23): 10378-10393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929355

RESUMO

Rationale: Construction of functional vascularized three-dimensional tissues has been a longstanding objective in the field of tissue engineering. The efficacy of using a tissue expander capsule as an induced vascular bed to prefabricate functional vascularized smooth muscle tissue flaps for bladder reconstruction in a rabbit model was tested. Methods: Skin tissue expanders were inserted into the groin to induce vascularized capsule pouch formation. Smooth muscle cells and endothelial progenitor cells were harvested and cocultured to form pre-vascularized smooth muscle cell sheet. Then repeated transplantation of triple-layer cell sheet grafts onto the vascularized capsular tissue was performed at 2-day intervals to prefabricate functional vascularized smooth muscle tissue flaps. Bladder muscular wall defects were created and repaired by six-layer cell sheet graft (sheet only), capsule flap (capsule only) and vascularized capsule prelaminated with smooth muscle cell sheet (sheet plus capsule). The animals were followed for 3 months after implantation and their bladders were explanted serially. Results: Bladder capacity and compliance were maintained in sheet plus capsule group throughout the 3 months. Tissue bath stimulation demonstrated that contractile responses to carbachol and KCl among the three groups revealed a significant difference (p < 0.05). Histologically, inflammation was evident in the capsule only group at 1 month and fibrosis was observed in sheet only group at 3 months. The vessel density in capsule only and sheet plus capsule group were significantly higher than in the sheet only group at each time point (p < 0.05). Comparison of the smooth muscle content among the three groups revealed a significant difference (p < 0.05). Conclusion: These results proved that the capsule may serve as an induced vascular bed for vascularized smooth muscle tissue flap prefabrication. The prefabricated functional vascularized smooth muscle tissue flap has the potential for reliable bladder reconstruction and may create new opportunities for vascularization in 3-D tissue engineering.


Assuntos
Miócitos de Músculo Liso/transplante , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos/transplante , Engenharia Tecidual/métodos , Bexiga Urinária/cirurgia , Animais , Carbacol/administração & dosagem , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura , Células Endoteliais , Estudos de Viabilidade , Masculino , Modelos Animais , Contração Muscular/efeitos dos fármacos , Músculo Liso/irrigação sanguínea , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Coelhos , Células-Tronco , Retalhos Cirúrgicos/irrigação sanguínea , Alicerces Teciduais , Transplante Autólogo/métodos , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos
4.
Asian J Androl ; 22(5): 459-464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929196

RESUMO

Surgical repair of complex posterior urethral disruptions remains one of the most challenging problems in urology. The efficacy of using a tissue expander capsule as an induced vascular bed to prefabricate axial vascularized buccal mucosa-lined flaps for tubularized posterior urethral reconstruction in a rabbit model was tested. The experiments were performed in three stages. First, silicone tissue expanders were inserted into the groin to induce vascularized capsule pouch formation. Next, buccal mucosa grafts were transplanted into the newly formed capsular tissue supplied by axial vessels for buccal mucosa-lined flap prefabrication. Then, circumferential posterior urethral defects were created and repaired with the buccal mucosa graft (Group 1), the capsule flap (Group 2), and the prefabricated capsule buccal mucosa composite flap (Group 3). After surgery, notable contracture of the tubularized buccal mucosa graft was observed in the neourethra, and none of the rabbits in Group 1 maintained a wide urethral caliber. In Group 2, the retrieved neourethra showed little evidence of epithelial lining during the study period, and the lumen caliber was narrowed at the 3-month evaluation. In Group 3, the buccal mucosa formed the lining in the neourethra and maintained a wide urethral caliber for 3 months. The capsule may serve as an induced vascular bed for buccal mucosa-lined flap prefabrication. The prefabricated buccal mucosa-lined flap may serve as a neourethra flap for posterior urethral replacement.


Assuntos
Mucosa Bucal/irrigação sanguínea , Mucosa Bucal/transplante , Procedimentos de Cirurgia Plástica/métodos , Dispositivos para Expansão de Tecidos , Uretra/cirurgia , Animais , Contratura/etiologia , Virilha , Masculino , Coelhos , Procedimentos de Cirurgia Plástica/efeitos adversos , Retalhos Cirúrgicos , Estruturas Criadas Cirurgicamente/patologia
5.
Sci Rep ; 9(1): 19141, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844104

RESUMO

Primary monosymptomatic nocturnal enuresis (PMNE) is a heterogeneous disorder, which remains a difficult condition to manage due to lack of knowledge on the underlying pathophysiological mechanisms. Here we investigated the underlying neuropathological mechanisms of PMNE with functional MRI (fMRI), combining the amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and seed-based functional connectivity (seed-based FC) analyses. Compared to the control group, PMNE group showed decreased ALFF value in the left medial orbital superior frontal gyrus (Frontal_Med_Orb_L), and increased ReHo value in the left superior occipital gyrus (Occipital_Sup_L). With left thalamus as the seed, PMNE group showed significantly decreased functional connectivity to the left medial superior frontal gyrus (Frontal_Sup_Medial_L). We conclude that these abnormal brain activities are probably important neuropathological mechanisms of PMNE in children. Furthermore, this study facilitated the understanding of underlying pathogenesis of PMNE and may provide an objective basis for the effective treatment.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética , Enurese Noturna/diagnóstico por imagem , Enurese Noturna/fisiopatologia , Descanso , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Rede Nervosa/fisiopatologia , Oxigênio/sangue
6.
Asian J Androl ; 21(4): 381-386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267985

RESUMO

Tubularized graft urethroplasty fails largely because of inadequate graft take. Prefabrication of buccal mucosa lined flap has theoretical indications for constructing neourethra with an independent blood supply. The efficacy of using a tissue expander capsule as an induced vascular bed to prefabricate an axial vascularized buccal mucosa-lined flap for tubularized urethral reconstruction in a rabbit model was tested. The experiments were performed in three stages. First, silicone tissue expanders were inserted into the groin to induce vascularized capsule pouch formation. Next, buccal mucosa grafts were transplanted to the newly formed capsular tissue supplied by the axial vessel for buccal mucosa-lined flap prefabrication. Then, circumferential urethral defects were created and repaired by buccal mucosa graft (Group 1), capsule flap (Group 2) and prefabricated capsule buccal mucosa composite flap (Group 3). With retrograde urethrography, no rabbits in Group 1 maintained a wide urethral caliber. In Group 2, the discontinued epithelial layer regenerated at 1 month, and the constructed neourethra narrowed even though the lumen surface formed intact urothelial cells at 3 months. In Group 3, buccal mucosa formed the lining in the neourethra and kept a wide urethral caliber for 3 months. The capsule may serve as an induced vascular bed for buccal mucosa-lined flap prefabrication. The prefabricated buccal mucosa-lined flap may serve as a neourethra flap for circumferential urethral replacement.


Assuntos
Mucosa Bucal/transplante , Procedimentos de Cirurgia Plástica/métodos , Uretra/cirurgia , Animais , Masculino , Modelos Animais , Coelhos
7.
Pediatr Res ; 86(5): 595-602, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31261369

RESUMO

BACKGROUND: Decreased expression of the renal aquaporin (AQP) protein family is associated with hydronephrosis in adult humans and animals. However, the expression of AQPs, especially subtypes AQP1-3, which play a core role in the urinary concentration function, in hydronephrotic human fetuses is not clear. The aim of this study is to investigate the expression of the AQP1-3 in normal and hydronephrotic human fetal kidneys. METHODS: Twenty-one normal and six hydronephrotic kidney (HK) samples were harvested from abortive fetuses. Meanwhile, seven normal adult human kidney samples were collected as positive controls. Quantitative real-time PCR, western blotting, and immunohistochemistry were used to analyze the expression of AQP1-3. RESULTS: Both the protein and messenger mRNA expression levels of AQP1-3 increased with gestational age in the normal fetuses, but the levels were significantly lower than those in the adult tissues and significantly higher than those in the hydronephrotic fetuses at the same gestational age. CONCLUSIONS: The increased expression of AQP1-3 with gestational age in the fetal kidney may indicate maturation of the urinary concentrating ability. The lower expression of AQP1-3 in HKs may reflect a maturation obstacle with regard to urinary concentration in human hydronephrotic fetuses.


Assuntos
Aquaporina 1/metabolismo , Aquaporina 3/metabolismo , Feto/metabolismo , Hidronefrose/metabolismo , Rim/metabolismo , Aquaporina 1/genética , Aquaporina 3/genética , Estudos de Casos e Controles , Humanos , Rim/embriologia , RNA Mensageiro/genética
8.
Cell Transplant ; 28(3): 328-342, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30712374

RESUMO

The survival of engineered tissue requires the formation of its own capillary network, which can anastomose with the host vasculature after transplantation. Currently, while many strategies, such as modifying the scaffold material, adding endothelial cells, or angiogenic factors, have been researched, engineered tissue implanted in vivo cannot timely access to sufficient blood supply, leading to ischemic apoptosis or shrinkage. Constructing vascularized engineered tissue with its own axial vessels and subsequent pedicled transfer is promising to solve the problem of vascularization in tissue engineering. In this study, we used the tissue expander capsule as a novel platform for vascularizing autologous smooth muscle cell (SMC) sheets and fabricating vascularized engineered tissue with its own vascular pedicle. First, we verified which time point was the most effective for constructing an axial capsule vascular bed. Second, we compared the outcome of SMC sheet transplantation onto the expander capsule and classical dorsal subcutaneous tissue, which was widely used in other studies for vascularization. Finally, we transplanted multilayered SMC sheets onto the capsule bed twice to verify the feasibility of fabricating thick pedicled engineered smooth muscle tissues. The results indicated that the axial capsule tissue could be successfully induced, and the capsule tissue 1 week after full expansion was the most vascularized. Quantitative comparisons of thickness, vessel density, and apoptosis of cell sheet grafts onto two vascular beds proved that the axial capsule vascular bed was more favorable to the growth and vascularization of transplants than classical subcutaneous tissue. Furthermore, thick vascularized smooth muscle tissues with the vascular pedicle could be constructed by multi-transplanting cell sheets onto the capsule bed. The combination of axial capsule vascular bed and cell sheet engineering may provide an efficient strategy to overcome the problem of slow or insufficient vascularization in tissue engineering.


Assuntos
Indutores da Angiogênese/metabolismo , Músculo Liso , Neovascularização Fisiológica , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Masculino , Músculo Liso/irrigação sanguínea , Músculo Liso/metabolismo , Músculo Liso/transplante , Coelhos
9.
PLoS One ; 13(9): e0204677, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256839

RESUMO

Cell sheet engineering has recently emerged as a promising strategy for scaffold-free tissue engineering. However, the primary method of harvesting cell sheets using temperature-responsive dishes has potential limitations. Here we report a novel cell sheet technology based on a coculture system in which SMCs are cocultured with EPCs on common polystyrene dishes. We found that an intact and highly viable cell sheet could be harvested using mechanical methods when SMCs and EPCs were cocultured on common polystyrene dishes at a ratio of 6:1 for 5 to 6 days; the method is simple, cost-effective and highly repeatable. Moreover, the cocultured cell sheet contained capillary-like networks and could secrete a variety of angiogenic factors. Finally, in vivo studies proved that the cocultured cell sheets were more favorable for the fabrication of vascularized smooth muscle tissues compared to single SMC sheets. This study provides a promising avenue for smooth muscle tissue engineering.


Assuntos
Técnicas de Cocultura/instrumentação , Células Progenitoras Endoteliais/citologia , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Animais , Adesão Celular , Sobrevivência Celular , Técnicas de Cocultura/métodos , Células Progenitoras Endoteliais/transplante , Masculino , Músculo Liso/irrigação sanguínea , Músculo Liso/citologia , Músculo Liso/transplante , Miócitos de Músculo Liso/transplante , Poliestirenos , Coelhos , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...