Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-989867

RESUMO

Objective:To investigate the etiologies and clinical characteristics of bilateral adrenal lesions.Methods:The clinical data of 143 patients with bilateral adrenal lesions hospitalized in the First Affiliated Hospital of Chongqing Medical University from Jan. 2013 to Mar. 2018 were collected and analyzed.Results:140 patients were retained for final analysis. 79 were men, and 61 were women. The age was (51.53±13.93) years. Regarding the etiologies, there were primary aldosteronism ( n=44, 31.43%) , Cushing’s syndrome ( n=27, 19.29%) , non-functional lesions ( n=23, 16.43%) , adrenal tuberculosis ( n=17, 12.14%) , pheochromocytoma ( n=11, 7.86%) , congenital adrenal hyperplasia ( n=5, 3.57%) , adrenal metastases ( n=5, 3.57%) , and adrenal lymphoma ( n=4, 2.86) . These patients were classified into the following groups according to the mass size: ≤2 cm, 2-4 cm and ≥4 cm. The highest proportion of primary aldosteronism (62.79%) , Cushing’s syndrome (46.15%) and pheochromocytoma (31.25%) was observed in the ≤2 cm, 2-4 cm and ≥4 cm groups, respectively. The mass sizes of primary aldosteronism, Cushing’s syndrome and pheochromocytoma were compared, with pheochromocytoma the largest, followed by Cushing’s syndrome, non-functional lesion, and primary aldosteronism. Conclusions:For patients with bilateral adrenal lesions in our hospital, primary aldosteronism and Cushing’s syndrome are more common than non-functional lesion. Mass size is of great value in the diagnosis of endocrinological etiology, as well as distinguishing malignant tumors from the benign ones. The imaging phenotype is helpful to determine tumor types.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-141580

RESUMO

Coronaviruses that infect humans belong to the Alpha-coronavirus (including HCoV-229E) and Beta-coronavirus (including SARS-CoV and SARS-CoV-2) genera. In particular, SARS-CoV-2 is currently a major threat to public health worldwide. However, no commercial vaccines against the coronaviruses that can infect humans are available. The spike (S) homotrimers bind to their receptors through the receptor-binding domain (RBD), which is believed to be a major target to block viral entry. In this study, we selected Alpha-coronavirus (HCoV-229E) and Beta-coronavirus (SARS-CoV and SARS-CoV-2) as models. Their RBDs were observed to adopt two different conformational states (lying or standing). Then, structural and immunological analyses were used to explore differences in the immune response with RBDs among these coronaviruses. Our results showed that more RBD-specific antibodies were induced by the S trimer with the RBD in the "standing" state (SARS-CoV and SARS-CoV-2) than the S trimer with the RBD in the "lying" state (HCoV-229E), and the affinity between the RBD-specific antibodies and S trimer was also higher in the SARS-CoV and SARS-CoV-2. In addition, we found that the ability of the HCoV-229E RBD to induce neutralizing antibodies was much lower and the intact and stable S1 subunit was essential for producing efficient neutralizing antibodies against HCoV-229E. Importantly, our results reveal different vaccine strategies for coronaviruses, and S-trimer is better than RBD as a target for vaccine development in Alpha-coronavirus. Our findings will provide important implications for future development of coronavirus vaccines. ImportanceOutbreak of coronaviruses, especially SARS-CoV-2, poses a serious threat to global public health. Development of vaccines to prevent the coronaviruses that can infect humans has always been a top priority. Coronavirus spike (S) protein is considered as a major target for vaccine development. Currently, structural studies have shown that Alpha-coronavirus (HCoV-229E) and Beta-coronavirus (SARS-CoV and SARS-CoV-2) RBDs are in lying and standing state, respectively. Here, we tested the ability of S-trimer and RBD to induce neutralizing antibodies among these coronaviruses. Our results showed that Beta-CoVs RBDs are in a standing state, and their S proteins can induce more neutralizing antibodies targeting RBD. However, HCoV-229E RBD is in a lying state, and its S protein induces a low level of neutralizing antibody targeting RBD. Our results indicate that Alpha-coronavirus is more conducive to escape host immune recognition, and also provide novel ideas for the development of vaccines targeting S protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...