Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 39(10): 9765-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22733494

RESUMO

Verticillium wilt of cotton (Gossypium hirsutum) is a widespread and destructive disease that is caused by the soil-borne fungus pathogen Verticillium dahliae (V. dahliae). To study the molecular mechanism in wilt tolerance, suppression subtractive hybridization (SSH) and dot blot techniques were used to identify the specifically expressed genes in a superior wilt-resistant cotton cultivar (G. hirsutum cv. Zhongzhimian KV1) after inoculation with pathogen. cDNAs from the root tissues of Zhongzhimian KV1 inoculated with V. dahliae strain V991 or water mock were used to construct the libraries that contain 4800 clones. Based on the results from dot blot analysis, 147 clones were clearly induced by V. dahliae and selected from the SSH libraries for sequencing. A total of 92 up-regulated and 7 down-regulated non-redundant expressed sequences tags (ESTs) were identified as disease responsive genes and classified into 9 functional groups. Two important clues regarding wilt-resistant G. hirsutum were obtained from this study. One was Bet v 1 family; the other was UbI gene family that may play an important role in the defense reaction against Verticillium wilt. The result from real-time quantitative reverse transcription polymerase chain reaction showed that these genes were activated quickly and transiently after inoculation with V. dahliae.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Transcriptoma , Verticillium/fisiologia , Etiquetas de Sequências Expressas , Expressão Gênica , Biblioteca Gênica , Estudos de Associação Genética , Gossypium/genética , Gossypium/imunologia , Gossypium/microbiologia , Interações Hospedeiro-Patógeno , Reação em Cadeia da Polimerase em Tempo Real
2.
Proteomics ; 11(22): 4296-309, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21928292

RESUMO

Verticillium wilt of cotton is a vascular disease mainly caused by the soil-born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt-resistant sea-island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis between infected and mock-inoculated roots of G. barbadense var. Hai 7124 (a cultivar showing resistance against V. dahliae) was performed by 2-DE combined with local EST database-assisted PMF and MS/MS analysis. A total of 51 upregulated and 17 downregulated proteins were identified, and these proteins are mainly involved in defense and stress responses, primary and secondary metabolisms, lipid transport, and cytoskeleton organization. Three novel clues regarding wilt resistance of G. barbadense are gained from this study. First, ethylene signaling was significantly activated in the cotton roots attacked by V. dahliae as shown by the elevated expression of ethylene biosynthesis and signaling components. Second, the Bet v 1 family proteins may play an important role in the defense reaction against Verticillium wilt. Third, wilt resistance may implicate the redirection of carbohydrate flux from glycolysis to pentose phosphate pathway (PPP). To our knowledge, this study is the first root proteomic analysis on cotton wilt resistance and provides important insights for establishing strategies to control this disease.


Assuntos
Gossypium/metabolismo , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/metabolismo , Western Blotting , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Raízes de Plantas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/fisiologia
3.
Plant Cell Physiol ; 47(8): 1058-68, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16854938

RESUMO

Plant non-symbiotic hemoglobins (nsHbs) play important roles in a variety of cellular processes. Previous evidence from this laboratory indicates that the expression of a class 1 nsHb gene (GhHb1) from cotton is induced in cotton roots challenged with the Verticillium wilt fungus. The present study examined further the expression patterns of the GhHb1 gene in cotton plants and characterized its in vivo function through ectopic overexpression of the gene in Arabidopsis thaliana. Expression of GhHb1 in cotton plants was induced by exogenously applied salicylic acid, methyl jasmonic acid, ethylene, hydrogen peroxide (H(2)O(2)) and nitric oxide (NO). Ectopic overproduction of GhHb1 in Arabidopsis led to constitutive expression of the defense genes PR-1 and PDF1.2, and conferred enhanced disease resistance to Pseudomonas syringae and tolerance to V. dahliae. GhHb1-transgenic Arabidopsis seedlings were more tolerant to exogenous NO and contained lower levels of cellular NO than the wild-type control. Moreover, transgenic plants with relatively high levels of expression of the GhHb1 gene developed spontaneous hypersensitive lesions on the leaves in the absence of pathogen inoculation. Our results indicate that GhHb1 proteins play a role in the defense responses against pathogen invasions, possibly by modulating the NO level and the ratio of H(2)O(2)/NO in the defense process.


Assuntos
Arabidopsis/fisiologia , Hemoglobinas/fisiologia , Imunidade Inata/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/fisiologia , Defensinas/metabolismo , Gossypium/genética , Hemoglobinas/genética , Imunidade Inata/genética , Nitroprussiato/farmacologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Verticillium/patogenicidade , Verticillium/fisiologia , Virulência
4.
Pest Manag Sci ; 60(9): 887-93, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15382503

RESUMO

Compared with an unselected susceptible population, a cotton bollworm, Helicoverpa armigera (Hübner), population selected for 22 generations with transgenic cotton leaves (modified Cry1A) in the laboratory developed 11.0-fold resistance to Cry1Ac (one single-protein product MVPII). Resistance to Bacillus thuringiensis Berliner subsp kurstaki (Btk) was selected for 22 generations with a 5.2-fold increase in LC50. The estimated realized heritabilities (h2) of resistance for transgenic-cotton- and Btk-selected populations were 0.1008 and 0.2341, respectively. This reflects the higher phenotypic variation in response to Cry1Ac in the transgenic-cotton-selected population. This variation may have been caused by differences in protein toxin levels expressed in different growth stages of the transgenic cotton. Because of the different slopes of the probit regression lines between Cry1Ac and Btk, the estimated realized h2 cannot be used visually to compare resistance development to Cry1Ac and Btk in H armigera. Thus, the response quotient (Q) of resistance was also estimated. The Q values of resistance for transgenic-cotton- and Btk-selected populations were 0.0763 and 0.0836, respectively. This showed that the rate of resistance development would be similar in both selection populations. This result indicates that the selection of resistance using transgenic cotton is different from that selected using the single toxin. Resistance risk to transgenic cotton and Btk in field populations was assessed assuming different pressures of selection by using the estimated h2. Assuming the h2 of resistance in a field population was half of the estimated h2, and the population received prolonged and uniform exposure to transgenic cotton or Btk causing >70% mortality in each generation, we predicted that resistance would increase 10-fold after <23 generations for Cry1Ac in transgenic cotton-selected-populations and after <21 generations for Btk in Btk-selected populations. Cross-resistance would be expected after <48 generations for Btk in transgenic-cotton-selected populations and after <21 generations for Cry1Ac in Btk-selected population. The results show that the potential to evolve resistance is similar in both transgenic-cotton- and Btk-selected populations, but that cross-resistance development to Btk is slower in transgenic-cotton-selected populations than cross-resistance development to Cry1Ac in Btk-selected populations.


Assuntos
Bacillus thuringiensis/crescimento & desenvolvimento , Gossypium/parasitologia , Lepidópteros/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Endotoxinas/metabolismo , Gossypium/genética , Proteínas Hemolisinas , Imunidade Inata/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/imunologia , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...