Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(42): 28150-28161, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723013

RESUMO

Indentation tests and numerical simulations were conducted to investigate the effects of the indenter parameters (diameter and cone angle) and the relative density of Aluminum (Al) foams on the deformation mechanism of closed-cell Al foams, load response, and energy-absorbing capability. The results demonstrated that the densification occurred below the indenter, and cell tearing and bending occurred on both sides of the indenter, while the lateral plastic deformation insignificantly took place during the indentation tests. The load response and absorbed energy per unit volume dramatically increased with the cone angle of the indenter and the relative density of Al foams. However, the load response slightly increased but the absorbed energy per unit volume linearly decreased with the diameter of the indenter. Interestingly, the energy-absorption efficiency was independent of the diameter and cone angle of the indenter, and the relative density of Al foams as well. Our results suggest the indentation tests are recommended approaches to reflect the mechanical properties of closed-cell Al foams.

2.
ACS Omega ; 6(20): 13260-13274, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056474

RESUMO

The coal and gas outbursts are recognized as a worldwide difficulty, and there is still ample research space in this field, especially on the mechanical mechanism of outbursts. The main purpose of this paper is to attempt to reveal the outburst mechanism as fully as possible from the point of view of mechanics. In this paper, a mechanical model on coal and gas outbursts including the governing equations of gas desorption-seepage, the stress state in the coal sample, and the criteria of coal sample failure and outburst evolution is put forward according to the porous media seepage theory and elastic theory. Based on the proposed model, the variation and distribution of the gas state and stress state in the coal sample in the outburst are analyzed quantitatively and a series of detailed discussions are conducted in terms of the in-situ stress, gas pressure, and the physical characteristics of coal in outbursts. The results of theoretical analysis and numerical simulation show that the stress concentration in the front of the outburst cavity is the main reason for the failure of the coal sample in this area, and then, the drag force caused by gas flow provides energy for the movement of the crushed coal sample, which leads to the outburst cavity expansion and the increase of stress concentration factor. The end of the outburst is because the gas velocity is less than the threshold friction velocity of the crushed coal sample. Additionally, the outburst strength increases with the increase of the vertical in-situ stress and initial gas pressure and decreases with the increase of the internal friction angle and cohesion of coal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...