Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5040, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866786

RESUMO

Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.

2.
Science ; 384(6702): 1318-1323, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900888

RESUMO

High dynamic strength is of fundamental importance for fibrous materials that are used in high-strain rate environments. Carbon nanotube fibers are one of the most promising candidates. Using a strategy to optimize hierarchical structures, we fabricated carbon nanotube fibers with a dynamic strength of 14 gigapascals (GPa) and excellent energy absorption. The dynamic performance of the fibers is attributed to the simultaneous breakage of individual nanotubes and delocalization of impact energy that occurs during the high-strain rate loading process; these behaviors are due to improvements in interfacial interactions, nanotube alignment, and densification therein. This work presents an effective strategy to utilize the strength of individual carbon nanotubes at the macroscale and provides fresh mechanism insights.

3.
ACS Nano ; 18(22): 14377-14387, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781118

RESUMO

Liquid crystal wet-spun carbon nanotube fibers (CNTFs) offer notable advantages, such as precise alignment and scalability. However, these CNTFs usually suffer premature failure through intertube slippage due to the weak interfacial interactions between adjacent shells and bundles. Herein, we present a microwave (MW) welding strategy to enhance intertube interactions by partially carbonizing interstitial heterocyclic aramid polymers. The resulting CNTFs exhibit ultrahigh static tensile strength (6.74 ± 0.34 GPa) and dynamic tensile strength (9.52 ± 1.31 GPa), outperforming other traditional high-performance fibers. This work provides a straightforward yet effective approach to strengthening CNTFs for advanced engineering applications.

4.
Sci Bull (Beijing) ; 68(23): 2973-2981, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798179

RESUMO

Nature-derived silk fibers possess excellent biocompatibility, sustainability, and mechanical properties, yet producing strong and tough silk fibers in a facile and large-scale manner remains a significant challenge. Herein, we report a simple method for preparing strong and tough silk fibers by feeding silkworms rare earth ion-modified diets. The resulting silk fibers exhibit significantly increased tensile strength and toughness, with average values of 0.85 ± 0.07 GPa and 156 ± 13 MJ m-3, respectively, and maximum values of 0.97 ± 0.04 GPa and 188 ± 19 MJ m-3, approaching those of spider dragline silk. Our findings suggest that the incorporation of rare earth ions (La3+ or Eu3+) into the silk fibers contributes to this enhancement. Structure analysis reveals a reduction in content and an improvement in orientation of ß-sheet nanocrystals in silk fibers. X-ray photoelectron spectroscopy analysis confirms the chemical interaction between rare earth ions with ß-sheet nanocrystals. The structural evolution and chemical interactions lead to the simultaneous enhancement in both strength and toughness. This work presents a simple, scalable, and effective strategy for producing ultra-strong and tough silk fibers with potential applications in areas requiring super structural materials, such as personal protection and aerospace.


Assuntos
Bombyx , Seda , Animais , Seda/química , Bombyx/metabolismo , Resistência à Tração , Íons/metabolismo , Dieta
5.
Adv Mater ; 35(48): e2306144, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37505197

RESUMO

Few-walled carbon nanotube (FWCNT) is composed of a few coaxial shells of CNTs with different diameters. The shells in one tube can slide relatively to each other under external forces, potentially leading to regulated electrical properties, which are never explored due to experimental difficulties. In this work, the electromechanical response induced by inter-shell sliding of individual CNTs is studied and revealed the linear electrical current variation for the first time. Based on centimeter-long FWCNTs grown through chemical vapor deposition, controllable and reversible inter-shell sliding is realized while simultaneously recording the electrical current. Reversible and linear current variation with inter-shell sliding is observed, which is consistent with the proposed inter-shell tunneling model. Further, a silk fibroin-assisted transfer technique is developed for long CNTs and realized the fabrication of FWCNT-based flexible devices. Tensile stress can be applied on the FWCNTs@silk film encapsulated in elastic silicone to induce inter-shell sliding and thus controls electrical current, which is demonstrated to serve as a new human-machine interface with high reliability. Besides, it is foreseen that the electromechanical behaviors induced by inter-layer sliding in 1D nanotubes may also be extended to 2D layered materials, shedding new light on the fabrication of novel electronics.

6.
Nat Commun ; 14(1): 3019, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230970

RESUMO

Synthetic high-performance fibers present excellent mechanical properties and promising applications in the impact protection field. However, fabricating fibers with high strength and high toughness is challenging due to their intrinsic conflicts. Herein, we report a simultaneous improvement in strength, toughness, and modulus of heterocyclic aramid fibers by 26%, 66%, and 13%, respectively, via polymerizing a small amount (0.05 wt%) of short aminated single-walled carbon nanotubes (SWNTs), achieving a tensile strength of 6.44 ± 0.11 GPa, a toughness of 184.0 ± 11.4 MJ m-3, and a Young's modulus of 141.7 ± 4.0 GPa. Mechanism analyses reveal that short aminated SWNTs improve the crystallinity and orientation degree by affecting the structures of heterocyclic aramid chains around SWNTs, and in situ polymerization increases the interfacial interaction therein to promote stress transfer and suppress strain localization. These two effects account for the simultaneous improvement in strength and toughness.

7.
ACS Appl Mater Interfaces ; 15(4): 5701-5708, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661854

RESUMO

Carbon nanotubes (CNTs) are promising building blocks for the fabrication of novel fibers with structural and functional properties. However, the mechanical and electrical performances of carbon nanotube fibers (CNTFs) are far lower than the intrinsic properties of individual CNTs. Exploring methods for the controllable assembly and continuous preparation of high-performance CNTFs is still challenging. Herein, a graphene/chlorosulfonic acid-assisted wet-stretching method is developed to produce highly densified and well-aligned graphene/carbon nanotube fibers (G/CNTFs) with excellent mechanical and electrical performances. Graphene with small size and high quality can bridge the adjacent CNTs to avoid the interfacial slippage under deformation, which facilitates the formation of a robust architecture with abundant conductive pathways. Their ordered structure and enhanced interfacial interactions endow the fibers with both high strength (4.7 GPa) and high electrical conductivity (more than 2 × 106 S/m). G/CNTF-based lightweight wires show good flexibility and knittability, and the high-performance fiber heaters exhibit ultrafast electrothermal response over 1000 °C/s and a low operation voltage of 3 V. This method paves the way for optimizing the microstructures and producing high-strength and high-conductivity CNTFs, which are promising candidates for the high-value fiber-based applications.

8.
ACS Appl Mater Interfaces ; 14(41): 46491-46501, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36149391

RESUMO

A solar evaporator that utilizes solar radiation energy can be a renewable approach to deal with energy crisis and fresh water shortage. In this study, a solar evaporator was prepared by assembling composite carbonized wood of Melaleuca Leucadendron L. and biobased hydrogel. The multilayer MXene (Ti3C2Tx) was embedded in the scaffolding structure of the wood to form composite carbonized wood, where the loose and ordered scaffolding structure of the carbonized wood significantly improves the efficiency of water transportation with increased capillary force. The MXene adsorbed in the carbonized wood has high binding energy with water molecules, leading to reduction of vaporization enthalpy and contact angle. Moreover, the addition of MXene can improve the light absorbance, especially for the infrared and ultraviolet light bands. The hydrogel was fabricated by crosslinking konjac glucomannan and sodium alginate polysaccharides with Ca2+, and it has a lower thermal conductivity than water and improves the evaporation efficiency by regulating the temperature distribution and concentrating the heat on the surface of the evaporator. This solar evaporator has an evaporation rate of 3.71 kg·m-2·h-1 and an evaporation efficiency of 129.64% under 2 sun illumination and is available to generate an open-circuit voltage of 1.8 mV after a 20 min hydrovoltaic, demonstrating a high performance and versatility. Also, experiments and numerical simulation were carried out to understand the mechanism and design principles of this solar evaporators.

9.
Nano Lett ; 22(15): 6035-6047, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852935

RESUMO

The development of human society has set unprecedented demands for advanced fiber materials, such as lightweight and high-performance fibers for reinforcement of composite materials in frontier fields and functional and intelligent fibers in wearable electronics. Carbonene materials composed of sp2-hybridized carbon atoms have been demonstrated to be ideal building blocks for advanced fiber materials, which are referred to as carbonene fibers. Carbonene fibers that generally include pristine carbonene fibers, composite carbonene fibers, and carbonene-modified fibers hold great promise in transferring the extraordinary properties of nanoscale carbonene materials to macroscopic applications. Herein, we give a comprehensive discussion on the conception, classification, and design strategies of carbonene fibers and then summarize recent progress regarding the preparations and applications of carbonene fibers. Finally, we provide insights into developing lightweight, high-performance, functional, and intelligent carbonene fibers for next-generation fiber materials in the near future.


Assuntos
Carbono , Eletrônica , Humanos
10.
Research (Wash D C) ; 2022: 9854063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445199

RESUMO

Silkworm silk, which is obtained from domesticated Bombyx mori (B. mori), can be produced in a large scale. However, the mechanical properties of silkworm silk are inferior to its counterpart, spider dragline silk. Therefore, researchers are continuously exploring approaches to reinforce silkworm silk. Herein, we report a facile and scalable hot stretching process to reinforce natural silk fibers obtained from silkworm cocoons. Experimental results show that the obtained hot-stretched silk fibers (HSSFs) retain the chemical components of the original silk fibers while being endowed with increased ß-sheet nanocrystal content and crystalline orientation, leading to enhanced mechanical properties. Significantly, the average modulus of the HSSFs reaches 21.6 ± 2.8 GPa, which is about twice that of pristine silkworm silk fibers (11.0 ± 1.7 GPa). Besides, the tensile strength of the HSSFs reaches 0.77 ± 0.13 GPa, which is also obviously higher than that of the pristine silk (0.56 ± 0.08 GPa). The results show that the hot stretching treatment is effective and efficient for producing superstiff, strong, and tough silkworm silk fibers. We anticipate this approach may be also effective for reinforcing other natural or artificial polymer fibers or films containing abundant hydrogen bonds.

11.
ACS Nano ; 15(4): 7821-7832, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33834770

RESUMO

MXenes are an emerging class of highly conductive two-dimensional (2D) materials with electrochemical storage features. Oriented macroscopic Ti3C2Tx fibers can be fabricated from a colloidal 2D nematic phase dispersion. The layered conductive Ti3C2Tx fibers are ideal candidates for constructing high-speed ionic transport channels to enhance the electrochemical capacitive charge storage performance. In this work, we assemble Ti3C2Tx fibers with a high degree of flake orientation by a wet spinning process with controlled spinning speeds and morphology of the spinneret. In addition to the effects of cross-linking of magnesium ions between Ti3C2Tx flakes, the electronic conductivity and mechanical strength of the as-prepared fibers have been improved to 7200 S cm-1 and 118 MPa, respectively. The oriented Ti3C2Tx fibers present a volumetric capacitive charge storage capability of up to 1360 F cm-3 even in a Mg-ion based neutral electrolyte, with contributions from both nanofluidic ion transport and Mg-ion intercalation pseudocapacitance. The oriented 2D Ti3C2Tx driven nanofluidic channels with great electronic conductivity and mechanical strength endows the MXene fibers with attributes for serving as conductive ionic cables and active materials for fiber-type capacitive electrochemical energy storage, biosensors, and potentially biocompatible fibrillar tissues.

12.
Adv Sci (Weinh) ; 7(6): 1903048, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195100

RESUMO

Natural materials are often compositionally and structurally heterogeneous for realizing particular functions. Inspired by nature, researchers have designed hybrid materials that possess properties beyond each of the components. Particularly, it remains a great challenge to realize site-specific anisotropy, which widely exists in natural materials and is responsible for unique mechanical properties as well as physiological behaviors. Herein, the spontaneous formation of aligned graphene oxide (GO) flakes in sodium alginate (SA) matrix with locally controlled orientation via a direct-ink-writing printing process is reported. The GO flakes are spontaneously aligned in the SA matrix by shear force when being extruded and then arranged horizontally after drying on the substrate, forming a brick-and-mortar structure that could anisotropically contract or expand upon activation by heat, light, or water. By designing the printing pathways directed by finite element analysis, the orientation of GO flakes in the composite is locally controlled, which could further guide the composite to transform into versatile architectures. Particularly, the transformation is reversible when water vapor is applied as one of the stimuli. As a proof of concept, complex morphing architectures are experimentally demonstrated, which are in good consistency with the simulation results.

13.
ACS Nano ; 14(3): 3219-3226, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32083839

RESUMO

Protective clothing plays a vital role in safety and security. Traditional protective clothing can protect the human body from physical injury. It is highly desirable to integrate modern wearable electronics into a traditional protection suit to endow it with versatile smart functions. However, it is still challenging to integrate electronics into clothing through a practical approach while keeping the intrinsic flexibility and breathability of textiles. In this work, we realized the direct writing of laser-induced graphene (LIG) on a Kevlar textile in air and demonstrated the applications of the as-prepared Janus graphene/Kevlar textile in intelligent protective clothing. The C═O and N-C bonds in Kevlar were broken, and the remaining carbon atoms were reorganized into graphene, which can be ascribed to a photothermal effect induced by the laser irradiation. Proof-of-concept devices based on the prepared graphene/Kevlar textile, including flexible Zn-air batteries, electrocardiogram electrodes, and NO2 sensors, were demonstrated. Further, we fabricated self-powered and intelligent protective clothing based on the graphene/Kevlar textile. The laser-induced direct writing of graphene from commercial textiles in air conditions provides a versatile and rapid route for the fabrication of textile electronics.


Assuntos
Grafite/química , Lasers , Roupa de Proteção , Têxteis , Dispositivos Eletrônicos Vestíveis , Técnicas Eletroquímicas , Eletrodos , Humanos , Tamanho da Partícula , Propriedades de Superfície
14.
ACS Appl Mater Interfaces ; 12(10): 11825-11832, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054269

RESUMO

Flexible electronics have gained considerable research concern due to their wide prospect for health monitoring, soft robotics, and artificial intelligence, wherein flexible pressure sensors are necessary components of wearable devices. It is well known that the synergistic functions and multiscale structures of hybrid materials exert tremendous effects on the performance of flexible devices. Herein, inspired by the unique structure of the faceplate of sunflowers, we construct a hierarchical structure by in situ grown vertically aligned molybdenum disulfide (MoS2) nanosheets on carbonized silk fabric (MoS2/CSilk), which is applied as the sensing material in flexible pressure sensors. The MoS2/CSilk sensor displayed high sensitivity and good stability. We demonstrated its applications in monitoring subtle physiology signals, such as pulse wave and voice vibrations. In addition, it served as electrodes in lithium-ion batteries. The MoS2/CSilk electrode delivered ultrahigh first-cycle discharge and charge capacities of 2895 and 1594 mA h g-1, respectively. The MoS2/CSilk electrode exhibited a high capacity of 810 mA h g-1 with a CE close to 100% even after 300 cycles, suggesting good stability. The excellent overall performances are ascribed to the unique structure of the MoS2/CSilk and the synergistic effect of CSilk and MoS2. The concept and strategy of this work can be extended to the design and fabrication of other multifunctional devices.

15.
Sci Adv ; 5(11): eaax0649, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723600

RESUMO

Wearable sweat analysis devices for monitoring of multiple health-related biomarkers with high sensitivity are highly desired for noninvasive and real-time monitoring of human health. Here, we report a flexible sweat analysis patch based on a silk fabric-derived carbon textile for simultaneous detection of six health-related biomarkers. The intrinsically N-doped graphitic structure and the hierarchical woven, porous structure provided the carbon textile good electrical conductivity, rich active sites, and good water wettability for efficient electron transmission and abundant access to reactants, enabling it to serve as an excellent working electrode in electrochemical sensors. On the basis of the above, we fabricated a multiplex sweat analysis patch that is capable of simultaneous detection of glucose, lactate, ascorbic acid, uric acid, Na+, and K+. The integration of selective detectors with signal collection and transmission components in this device has enabled us to realize real-time analysis of sweat.


Assuntos
Técnicas Biossensoriais , Suor/química , Têxteis , Dispositivos Eletrônicos Vestíveis , Técnicas Eletroquímicas , Desenho de Equipamento , Humanos
16.
Nanoscale ; 11(24): 11856-11863, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184686

RESUMO

Flexible enzymatic glucose sensors have been investigated extensively for health monitoring systems. However, enzymatic glucose sensors have some problems, such as poor stability and complicated immobilization procedures. Rational and controllable design of nanomaterials with a unique structure, high activity and good electrochemical performance for nonenzymatic glucose sensors is desired critically. In this paper, we synthesize cuprous oxide nanoparticles embedded in carbon spheres directly on carbonized silk fabrics (Cu2O NPs@CSs/CSF), which is further used for the fabrication of a flexible and self-supported non-enzymatic glucose sensor. The Cu2O NPs@CSs/CSF shows good electrical conductivity due to the large contact area and the stable connection between the carbonized silk fabrics and carbon spheres. We demonstrate that the as-obtained non-enzymatic glucose sensor possesses high sensitivity and good stability, indicating its potential for practical applications. This strategy diversifies the toolbox available to the field of nonenzymatic glucose sensors and holds promise for flexible electronic devices.


Assuntos
Carbono/química , Cobre/química , Técnicas Eletroquímicas , Glucose/análise , Seda/química , Têxteis
17.
ACS Nano ; 13(5): 5541-5548, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31034773

RESUMO

Graphene exhibits properties of atomic thickness, high transparency, and high carrier mobility, which is highly desirable for a flexible transparent conductive material. However, the electronic properties of large-area chemical vapor deposition grown graphene film suffer from insulated polymer contaminations introduced by the transfer process and the easily cracked nature. Here, we report a preparation method of a transfer-medium-free large-area nanofiber-reinforced graphene (a-PAN/G) film simply by annealing the electrostatically spun polyacrylonitrile (PAN) nanofibers on the graphene film. The film could be free-standing on water and suspended in air with high transparency and enhanced electrical and mechanical properties compared to that of a monolayer graphene film. The flexible transparent a-PAN/G films were demonstrated as active materials for sensitive pressure sensors. The obtained pressure sensors demonstrate high sensitivity (44.5 kPa-1 within 1.2 kPa), low operating voltage (0.01-0.5 V), and excellent stability for 5500 loading-unloading cycles, revealing promising potential applications in wearable electronics.

18.
Nano Lett ; 18(11): 7085-7091, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30278140

RESUMO

Silk has outstanding mechanical properties and biocompatibility. It has been used to fabricate traditional textiles for thousands of years and can be produced in large scale. Silk materials are potentially attractive in modern textile electronics. However, silk is not electrically conductive, thus limiting its applications in electronics. Moreover, regenerated silk is generally rigid and brittle, which hinder post processing. Here we report the fabrication of conductive silk wire in which carbon nanotube (CNT) yarns are wrapped with fluffy and flexible silk nanofiber films. The silk nanofiber film was prepared by electrospinning and then wrapped around a rotating CNT yarn in situ. The obtained silk-sheathed CNT (CNT@Silk) wire has an insulating sheath, which protects the body against electrical shock. In addition, the fabricated wires exhibit a high electrical conductivity (3.1 × 104 S/m), good mechanical strength (16 cN/tex), excellent flexibility, and high durability. More importantly, the wires have an extremely low density (2.0-7.8 × 104 g/m3), which is 2 orders of magnitude lower than that of the traditional metal wire (for example, Cu). Moreover, the wires display a good resistance to humidity, and a simple post treatment can make the wires splash-resistant, thereby expanding its applications. On the basis of these features, we demonstrate the use of the lightweight CNT@Silk wires in smart clothes, including electrochromism and near-field communication.

19.
ACS Nano ; 12(9): 9134-9141, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30134097

RESUMO

Recently, wearable devices have been attracting significantly increased interest in human motion detection and human physiological signal monitoring. Currently, it is still a great challenge to fabricate strain sensors with high performance and good fit to the human body. In this work, we fabricated a close-fitting and wearable graphene textile strain sensor based on a graphene textile without polymer encapsulation. Graphene oxide acts as a colorant to dye the polyester fabric and is reduced at high temperature, which endows the graphene textile strain sensor with excellent performance. Compared with the previously reported strain sensors, our strain sensor exhibits a distinctive negative resistance variation with increasing strain. In addition, the sensor also demonstrates fascinating performance, including high sensitivity, long-term stability, and great comfort. Based on its superior performance, the graphene textile strain sensor can be knitted on clothing for detecting both subtle and large human motions, showing the tremendous potential for applications in wearable electronics.


Assuntos
Grafite/química , Movimento (Física) , Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos
20.
ACS Nano ; 12(9): 8839-8846, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30040381

RESUMO

Due to its excellent flexibility, graphene has an important application prospect in epidermal electronic sensors. However, there are drawbacks in current devices, such as sensitivity, range, lamination, and artistry. In this work, we have demonstrated a multilayer graphene epidermal electronic skin based on laser scribing graphene, whose patterns are programmable. A process has been developed to remove the unreduced graphene oxide. This method makes the epidermal electronic skin not only transferable to butterflies, human bodies, and any other objects inseparably and elegantly, merely with the assistance of water, but also have better sensitivity and stability. Therefore, pattern electronic skin could attach to every object like artwork. When packed in Ecoflex, electronic skin exhibits excellent performance, including ultrahigh sensitivity (gauge factor up to 673), large strain range (as high as 10%), and long-term stability. Therefore, many subtle physiological signals can be detected based on epidermal electronic skin with a single graphene line. Electronic skin with multiple graphene lines is employed to detect large-range human motion. To provide a deeper understanding of the resistance variation mechanism, a physical model is established to explain the relationship between the crack directions and electrical characteristics. These results show that graphene epidermal electronic skin has huge potential in health care and intelligent systems.


Assuntos
Grafite/química , Dispositivos Eletrônicos Vestíveis , Humanos , Lasers , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...