Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(6): 781-787, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833211

RESUMO

High-refractive-index polymers are important optical materials in optoelectronics. Conventional cyclic olefin polymers (COPs), possessing many excellent optical properties, are a class of highly promising optical materials; however, one of the greatest obstacles is their low refractive index of n = 1.52-1.54. Here, one efficient strategy of first incorporating high molar refraction groups, including carbazolyl and indolyl moieties, into unsaturated COPs via ring-opening metathesis polymerization (ROMP) and then introducing another high molar refraction sulfur atom by a subsequent thiol-ene click reaction is presented. The obtained cross-linked COPs bearing both an aromatic group and sulfur possess significantly higher refractive indices (n = 1.611-1.684 at 589 nm) and highly optical transparency (approximately 95%) in the range of vis-NIR. This provides a way toward potential applications of new-generation optical materials.

2.
Macromol Rapid Commun ; : e2400204, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751341

RESUMO

Inspired by the favorable impact of heteroatom-containing groups in phenoxy-imine titanium and late transition metal catalysts, a series of novel pyridylamido hafnium catalysts bearing ─OMe (Cat-OMe), ─CF3 (Cat-CF3), and ─C6F5 (Cat-C6F5) substituents are designed and synthesized. Together with the established hafnium catalysts Cat-H and Cat-iPr by Dow/Symyx, these catalysts are applied in the polymerization of α-olefins, including 1-hexene, 1-octene, and 4M1P, as well as in the copolymerization of these α-olefins with a specifically designed polar monomer. The enhancement of polymer molecular weight derived from catalyst modification and the incorporation of polar monomers is discussed in detail. Notably, the new catalysts are all highly active for α-olefins polymerization, with catalyst Cat-CF3 producing isotactic polymers with the highest molecular weight (Mw = 1649 kg mol-1); in copolymerization with polar monomers, catalyst Cat-OMe yields isotactic copolymer with the highest molecular weight (Mw = 2990 kg mol-1). Interestingly, catalyst Cat-C6F5 bearing a ─C6F5 group in the N-aryl moiety gives rise to poly(α-olefin) with reduced stereoselectivity. The findings of this study underscore the potential of heteroatom-containing groups in the development of early transition metal catalysts and the synthesis of polymer with novel structures.

3.
Angew Chem Int Ed Engl ; 63(23): e202404392, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38548659

RESUMO

Hydrocarbons, when used as the medium for transition metal catalyzed organic reactions and olefin (co-)polymerization, are ubiquitous. Environmentally friendly water is highly attractive and long-sought, but is greatly challenging as coordination-insertion copolymerization reaction medium of olefin and polar monomers. Unfavorable interactions from both water and polar monomer usually lead to either catalyst deactivation or the formation of low-molecular-weight polymers. Herein, we develop well-behaved neutral phosphinophenolato nickel catalysts, which enable aqueous copolymerization of ethylene and diverse polar monomers to produce significantly high-molecular-weight linear polar polyolefins (219-549 kDa, 0.13-1.29 mol %) in a single-component fashion under mild conditions for the first time. These copolymerization reactions occur better in water than in hydrocarbons such as toluene. The dual characteristics of high molecular weight and the incorporation of a small amount of functional group result in improved surface properties while retain the desirable intrinsic properties of high-density polyethylene (HDPE).

4.
Natl Sci Rev ; 10(7): nwad039, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37600561

RESUMO

The degradation of plastics has attracted much attention from the global community. Polyethylenes (PEs), as the most abundant synthetic plastics, are most frequently studied. PE is non-degradable and non-polar because of the sole presence of the pure hydrocarbon components. Concurrent incorporation of both in-chain cleavable and functional groups into the PE chain is an effective pathway to overcome the non-degradable and non-polar issue; however, the method for achieving this pathway remains elusive. Here, we report a strictly non-alternating (>99%) terpolymerization of ethylene with CO and fundamental polar monomers via a coordination-insertion mechanism using late transition metal catalysts, which effectively prevents the formation of undesired chelates originating from both co-monomers under a low CO concentration. High-molecular-weight linear PEs with both in-chain isolated keto (>99%) and main-chain functional groups are prepared. The incorporation of key low-content isolated keto groups makes PEs photodegradable while retaining their desirable bulk material properties, and the introduction of polar functional groups considerably improves their surface properties.

5.
ACS Macro Lett ; 12(3): 395-400, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877004

RESUMO

Cyclic olefin copolymer (COC) is one of the most promising optical materials; however, the brittle COC suffers from issues including a low refractive index. In this contribution, by the introduction of high refractive index comonomers including phenoxy substituted α-olefin (C4OAr), p-tolylthio substituted α-olefin (C4SAr) and carbazolyl substituted α-olefins (C4NAr, C3NAr, and C2NAr), the zirconocene mediated terpolymerization of ethylene (E) and tetracyclododecene (TCD) produces the preferred E-TCD-CnNAr (n = 2, 3, and 4) cyclic olefin terpolymers (COT) with tunable compositions (TCD: 11.5- 35.8 mol %, CnNAr: 1.2-5.0 mol %), high molecular weights and high glass transition temperatures (up to 167 °C) in high catalytic activities. Compared to the E-TCD copolymer (COC) material, these COT materials show the comparable thermal decomposition temperature (Td,5% = 437 °C), slightly higher strain at break value (up to 7.4%) and higher tensile strength (up to 60.5 MPa). In particular, these noncrystalline optical COT materials have significantly higher refractive indices of 1.550-1.569 and are more transparent (transmittance: 93-95%), relative to the COC materials, indicative of an excellent optical material.

6.
Polymers (Basel) ; 15(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850326

RESUMO

Polar-functionalized polyolefins are high-value materials with improved properties. However, their feedstocks generally come from non-renewable fossil products; thus, it requires the development of renewable bio-based monomers to produce functionalized polyolefins. In this contribution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols (furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copolymerization of these monomers with ethylene catalyzed by phosphine-sulfonate palladium catalysts was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better strain-at-break of these copolymers compared to the non-polar polyethylene, among which the copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and stress-at-break values of 940% and 35.9 MPa, respectively.

7.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558079

RESUMO

Among various catalyst design strategies used in the α-diimine nickel(II) and palladium(II) catalyst systems, the unsymmetrical strategy is an effective and widely utilized method. In this contribution, unsymmetrical nickel and palladium α-diimine catalysts (Ipty/iPr-Ni and Ipty/iPr-Pd) derived from the dibenzobarrelene backbone were constructed via the combination of pentiptycenyl and diisopropylphenyl substituents, and investigated toward ethylene (co)polymerization. Both of these catalysts were capable of polymerizing ethylene in a broad temperature range of 0-120 °C, in which Ipty/iPr-Ni could maintain activity in the level of 106 g mol-1 h-1 even at 120 °C. The branching densities of polyethylenes generated by both nickel and palladium catalysts could be modulated by the reaction temperature. Compared with symmetrical Ipty-Ni and iPr-Ni, Ipty/iPr-Ni exhibited the highest activity, the highest polymer molecular weight, and the lowest branching density. In addition, Ipty/iPr-Pd could produce copolymers of ethylene and methyl acrylate, with the polar monomer incorporating both on the main chain and the terminal of branches. Remarkably, the ratio of the in-chain and end-chain polar monomer incorporations could be modulated by varying the temperature.

8.
Angew Chem Int Ed Engl ; 61(33): e202207363, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35695787

RESUMO

Living polymerization by suppressing chain transfer is a very useful method for achieving precise molecular weight and structure control. However, the suppression of chain transfer at high temperatures is extremely challenging in any catalytic polymerization. This has been a severe limitation for catalytic olefin polymerization, which is one of the most important chemical reactions. Here, we report the unprecedented living polymerization of ethylene at 130 °C, with a narrow molecular weight distribution range of 1.04 to 1.08. This is a significant increase in the reaction temperature. Tailor-made α-diimine nickel catalysts that exhibit both the steric shielding and fluorine effects play an essential role in this breakthrough. These nickel catalysts are even active at 200 °C, and enable the formation of semi-crystalline, ultrahigh-molecular-weight polyethylene at 150 °C. Mechanistic insights into the key chain transfer reaction are elucidated by density functional theory calculations.

9.
Nat Commun ; 13(1): 725, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132061

RESUMO

Polyolefins with branches produced by ethylene alone via chain walking are highly desired in industry. Selective branch formation from uncontrolled chain walking is a long-standing challenge to generate exclusively branched polyolefins, however. Here we report such desirable microstructures in ethylene polymerization by using sterically constrained α-diimine nickel(II)/palladium(II) catalysts at 30 °C-90 °C that fall into industrial conditions. Branched polyethylenes with exclusive branch pattern of methyl branches (99%) and notably selective branch distribution of 1,4-Me2 unit (86%) can be generated. The ultrahigh degree of branching (>200 Me/1000 C) enables the well-defined product to mimic ethylene-propylene copolymers. More interestingly, branch distribution is predictable and computable by using a simple statistical model of p(1-p)n (p: the probability of branch formation). Mechanistic insights into the branch formation including branch pattern and branch distribution by an in-depth density functional theory (DFT) calculation are elucidated.

10.
Chemistry ; 27(46): 11935-11942, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34114692

RESUMO

Fluorine substituents in transition metal catalysts are of great importance in olefin polymerization catalysis; however, the comprehensive effect of fluorine substituents is elusive in seminal late transition metal α-diimine catalytic system. In this contribution, fluorine substituents at various positions (ortho-, meta-, and para-F) and with different numbers (Fn ; n=0, 1, 2, 3, 5) were installed into the well-defined N-terphenyl amine and thus were studied for the first time in the nickel α-diimine promoted ethylene polymerization and copolymerization with polar monomers. The position of the fluorine substituent was particularly crucial in these polymerization reactions in terms of catalytic activity, polymer molecular weight, branching density, and incorporation of polar monomer, and thus a picture on the fluorine effect was given. As a notable result, the ortho-F substituted α-diimine nickel catalyst produced highly linear polyethylenes with an extremely high molecular weight (Mw =8703 kDa) and a significantly low degree of branching of 1.4/1000 C; however, the meta-F and/or para-F substituted α-diimine nickel catalysts generated highly branched (up to 80.2/1000 C) polyethylenes with significantly low molecular weights (Mw =20-50 kDa).

11.
Angew Chem Int Ed Engl ; 60(8): 4018-4022, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33200862

RESUMO

An effective shielding of both apical positions of a neutral NiII active site is achieved by dibenzosuberyl groups, both attached via the same donors' N-aryl group in a Cs -type arrangement. The key aniline building block is accessible in a single step from commercially available dibenzosuberol. This shielding approach suppresses chain transfer and branch formation to such an extent that ultrahigh molecular weight polyethylenes (5×106  g mol-1 ) are accessible, with a strictly linear microstructure (<0.1 branches/1000C). Key features of this highly active (4.3×105  turnovers h-1 ) catalyst are an exceptionally facile preparation, thermal robustness (up to 90 °C polymerization temperature), ability for living polymerization and compatibility with THF as a polar reaction medium.

12.
Angew Chem Int Ed Engl ; 59(34): 14296-14302, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32441874

RESUMO

Branched polyolefin microstructures resulting from so-called "chain walking" are a fascinating feature of late transition metal catalysts; however, to date it has not been demonstrated how desirable branched polyolefin microstructures can be generated thereby. We demonstrate how highly branched polyethylenes with methyl branches (220 Me/1000 C) exclusively and very high molecular weights (ca. 106  g mol-1 ), reaching the branch density and microstructure of commercial ethylene-propylene elastomers, can be generated from ethylene alone. At the same time, polar groups on the main chain can be generated by in-chain incorporation of methyl acrylate. Key to this strategy is a novel rigid environment in an α-diimine PdII catalyst with a steric constraint that allows for excessive chain walking and branching, but restricts branch formation to methyl branches, hinders chain transfer to afford a living polymerization, and inverts the regioselectivity of acrylate insertion to a 1,2-mode.

13.
Dalton Trans ; 49(15): 4824-4833, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32215431

RESUMO

As the analogues of classical α-diimine nickel catalysts, pyridine-imine nickel catalysts are of great interest for olefin polymerization to produce low molecular weight and branched polyethylenes. In this contribution, pyridine-imine nickel complexes Ni1-Ni4 bearing dibenzhydryl- and pentiptycenyl-N-aryl substituents and H- and Me-imine backbones were synthesized and systematically studied for ethylene polymerization. X-ray diffraction studies revealed that Ni1, Ni2 and Ni4 adopted a monoligated/binuclear structure, while Ni3 was found to adopt a monoligated/mononuclear structure, which differed from the bisligated/mononuclear mode reported previously. Upon activation with aluminum reagents such as Et2AlCl, MAO or MMAO, all these nickel complexes displayed very high activities (up to 14 530 kg mol-1 h-1) for ethylene polymerization. Branched (12-69/1000C) polyethylenes with low molecular weights (Mw: 0.7-22.1 kDa) were obtained with internal double bonds as the predominant unsaturated groups. The influences of the catalyst structure, type and amount of cocatalyst, time, temperature, pressure, and polar additive on the catalytic performances were thoroughly investigated.

14.
Dalton Trans ; 49(8): 2636-2644, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32040101

RESUMO

In transition-metal catalyst structures, both the ligand structure and the initiating group are crucial components for olefin polymerization. Compared to numerous studies on tuning the electronic and steric effects of ligands, there is no report on the comprehensive investigation of initiating groups. In this contribution, five different initiating groups including "NiMe", "NiPh", "Ni(allyl)", "Ni(COD)", and "Ni(acac)/AlEt2Cl" were designed and installed into sterically bulky phosphino-phenolate nickel complexes Ni1-Ni5, respectively, which were further tested for ethylene (co)polymerization. In ethylene polymerization, the order of activity was Ni1-PPh3 (NiMe) > Ni2 (NiPh) ≫ Ni3 (Ni(allyl)) = Ni4 (Ni(COD)) = Ni5 (Ni(acac)) at low temperature conditions (30 °C) with Ni1 being the most active group (850 kg mol-1 h-1). By comparison, at high temperatures (50 °C-90 °C), the activity followed the trend of Ni2 > Ni1-PPh3 > Ni4 ≫ Ni5 > Ni3 with Ni2 exhibiting the highest activity of 6290 kg mol-1 h-1. These results indicated that the choice of initiating groups was important in the polymerization reaction. In addition, Ni1-pyr and Ni2 enabled the copolymerization of ethylene with polar comonomers such as vinyl trimethoxysilane, 6-chloro-1-hexene, and nbutyl allyl ether to give polar functionalized polyethylenes with incorporation of up to 1.28 mol% and high molecular weights (up to 66 kDa).

15.
Dalton Trans ; 47(32): 10853-10856, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29995970

RESUMO

The ynamine TMP-C[triple bond, length as m-dash]C-CH3 adds HB(C6F5)2 to give the unsaturated C2-bridged N/B FLP 5. Compound 5 shows the structural data indicating a marked participation of the zwitterionic mesomeric borata-alkene/iminium form. It splits dihydrogen at r.t. with Z- to E-isomerization at the central C[double bond, length as m-dash]C double bond. Hydroboration of the ynamine Me3Si-C[triple bond, length as m-dash]C-NiPr2 with HB(C6F5)2 yields a N/B FLP that shows a strongly distorted central C[double bond, length as m-dash]C double bond with a rotation of the planes of the substituent pairs at its ends by ca. 57°.

16.
Chem Commun (Camb) ; 54(45): 5724-5727, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29774330

RESUMO

The methyl zirconocene complex Cp*2Zr(Me)OMes reacts with H3C-B(C6F5)2 and CO to give the respective acetyl(methyl)borate Zr complex. Cp*2Zr(H)OMes reacts with H3C-B(C6F5)2 and CO to give the respective acetyl(hydrido)borate Zr product, admixed with a minor amount of the formyl(methyl)borate Zr complex isomer. Prolonged exposure to CO under close to ambient conditions results in the uptake of another CO equivalent to yield the corresponding borata-ß-lactone zirconocene product.

17.
Dalton Trans ; 46(35): 11715-11721, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28828440

RESUMO

The secondary aryl-P(H) phosphanyl substituted tert-butylacetylenes 7a,b (aryl: Mes or Mes*) undergo hydroboration with [HB(C6F5)2] to give the geminal vinylidene-bridged P/B Lewis pairs 8a,b. The treatment of 8a,b with benzonitrile, N-sulfinylaniline, and phenyl isothiocyanate, respectively, gives the addition products 12a,b, 13a,b, and 14 with proton transfer from the phosphorus to the more basic nitrogen site. The reaction of the FLPs 8a,b with carbon dioxide yields a doubly boron bonded addition product. The reaction of 8b with a conjugated ynone formally proceeded by trans-1,2-hydrophosphination of the alkyne at the geminal FLP framework to give the seven-membered heterocycle 21.

18.
J Am Chem Soc ; 139(18): 6474-6483, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28407466

RESUMO

Treatment of the bulky metallocene hydride Cp*2Zr(H)OMes (Cp* = pentamethylcyclopentadienyl, Mes = mesityl) with Piers' borane [HB(C6F5)2] and carbon monoxide (CO) gave the formylhydridoborate complex [Zr]-O═CH-BH(C6F5)2 ([Zr] = Cp*2Zr-OMes). From the dynamic NMR behavior, its endergonic equilibration with the [Zr]-O-CH2-B(C6F5)2 isomer was deduced, which showed typical reactions of an oxygen/boron frustrated Lewis pair. It was trapped with CO to give an O-[Zr] bonded borata-ß-lactone. Trapping with carbon dioxide (CO2) gave the respective O-[Zr] bonded cyclic boratacarbonate product. These reaction pathways were analyzed by density functional theory calculation. The formylhydridoborate complex was further reduced by dihydrogen via two steps; it reacted rapidly with H2 to give Cp*2Zr(OH)OMes and H3C-B(C6F5)2, which then slowly reacted further with H2 to eventually give [Zr]-O(H)-B(H)(C6F5)2 and methane (CH4). Most complexes were characterized by X-ray diffraction.

19.
Angew Chem Int Ed Engl ; 55(46): 14378-14383, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27736020

RESUMO

A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII -catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively in-chain anhydride groups are formed by terpolymerization with carbic anhydride. Combined experimental and theoretical DFT studies reveal the key for this direct approach to telechelics to be a match of the comonomers' different electronics and bulk. Identified essential features of the comonomer are that it is an electron-rich olefin that forms an insertion product stabilized by an additional interaction, namely a π-η3 interaction for the case of VF.

20.
Macromol Rapid Commun ; 37(11): 934-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27111477

RESUMO

Cationic imidazolium-functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm-BF4 ) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium-substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm-Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water.


Assuntos
Imidazóis/química , Paládio , Polietilenos/química , Polietilenos/síntese química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...