Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 11(1): 488, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27822910

RESUMO

The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

2.
Chin Med J (Engl) ; 120(4): 274-9, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17374276

RESUMO

BACKGROUND: Corneal neovascular leakage can lead to edema and secondary scarring. Previous studies have shown that pericytes play a key role in maturation of angiogenesis. The present studies investigate the relationship between vascular permeability and pericyte coverage of endothelial cells in rat corneal neovascular induced by alkali burns. METHODS: Corneal neovascular vessels induced by alkali burns was performed in Sprague-Dawley rats. Corneas were excised on 1, 2, 3, 5, 7 and 10 days after cauterization. The vascular permeability rate was measured by the Evans blue method. The microvessel pericyte coverage index (MPI) was applied to quantify the pericyte coverage through double immunofluorescent staining of frozen sections of corneas with CD31 as the endothelial and alpha-smooth muscle actin (alpha-SMA) as the pericyte markers. The correlation between permeability rate and MPI was analyzed. Pericyte coverage was confirmed ultrastructually using transmission electron microscopy. RESULTS: The vascular permeability rate was (1.14 +/- 0.17), (0.24 +/- 0.08), (0.29 +/- 0.16), (0.14 +/- 0.10), (0.09 +/- 0.06) and (0.05 +/- 0.04) microg x ml(-1) x mm(-2) respectively on 1, 2, 3, 5, 7 and 10 days after cauterization. The MPI was 0, 16.07%, 11.95%, 43.84%, 73.97% and 86.21% respectively at the above mentioned time points. The correlation coefficient between MPI and the permeability rate was -0.943 (P = 0.005). CONCLUSIONS: Pericyte recruitment was significantly correlated with the permeability of corneal neovascularization induced by alkali burns in rats. Therapeutic strategies aiming at anti-leakage should be most effective if they promote pericytes proliferation in the course of corneal neovascularization.


Assuntos
Queimaduras Químicas/fisiopatologia , Permeabilidade Capilar , Neovascularização da Córnea/fisiopatologia , Queimaduras Oculares/fisiopatologia , Pericitos/fisiologia , Álcalis , Animais , Movimento Celular , Córnea/irrigação sanguínea , Córnea/ultraestrutura , Queimaduras Oculares/induzido quimicamente , Feminino , Imunofluorescência , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...