Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1415921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863540

RESUMO

GATA proteins are transcription factors of zinc finger proteins, which play an important role in plant growth development and abiotic stress. However, there have been no identification or systematic studies of the GATA gene family in eggplant. In this study, 28 SmGATA genes were identified in the genome database of eggplant, which could be divided into four subgroups. Plant development, hormones, and stress-related cis-acting elements were identified in promoter regions of the SmGATA gene family. RT-qPCR indicated that 4 SmGATA genes displayed upregulated expressions during fruit developmental stage, whereas 2 SmGATA genes were down-regulated expression patterns. It was also demonstrated that SmGATA genes may be involved in light signals to regulate fruit anthocyanin biosynthesis. Furthermore, the expression patterns of SmGATA genes under ABA, GA and MeJA treatments showed that the SmGATAs were involved in the process of fruit ripening. Notably, SmGATA4 and SmGATA23 were highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways and the proteins they encoded were localized in the nucleus. All these results showed GATA genes likely play a major role in regulating fruit anthocyanin biosynthesis by integrating the light, ABA, GA and MeJA signaling pathways and provided references for further research on fruit quality in eggplant.

2.
Front Plant Sci ; 15: 1336726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708388

RESUMO

In the post-genomic era, virus-induced gene silencing (VIGS) has played an important role in research on reverse genetics in plants. Commonly used Agrobacterium-mediated VIGS inoculation methods include stem scratching, leaf infiltration, use of agrodrench, and air-brush spraying. In this study, we developed a root wounding-immersion method in which 1/3 of the plant root (length) was cut and immersed in a tobacco rattle virus (TRV)1:TRV2 mixed solution for 30 min. We optimized the procedure in Nicotiana benthamiana and successfully silenced N. benthamiana, tomato (Solanum lycopersicum), pepper (Capsicum annuum L.), eggplant (Solanum melongena), and Arabidopsis thaliana phytoene desaturase (PDS), and we observed the movement of green fluorescent protein (GFP) from the roots to the stem and leaves. The silencing rate of PDS in N. benthamiana and tomato was 95-100%. In addition, we successfully silenced two disease-resistance genes, SITL5 and SITL6, to decrease disease resistance in tomatoes (CLN2037E). The root wounding-immersion method can be used to inoculate large batches of plants in a short time and with high efficiency, and fresh bacterial infusions can be reused several times. The most important aspect of the root wounding-immersion method is its application to plant species susceptible to root inoculation, as well as its ability to inoculate seedlings from early growth stages. This method offers a means to conduct large-scale functional genome screening in plants.

3.
Genes (Basel) ; 14(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761928

RESUMO

An in-house tomato inbred line, YNAU335, was planted in a greenhouse in spring from 2014 to 2017, and showed immunity to tomato spotted wilt virus (TSWV). YNAU335 was infected with TSWV in the spring from 2018 to 2020, and disease was observed on the leaves, sepals, and fruits. In 2021 and 2022, YNAU335 was planted in spring in the same greenhouse, which was suspected of being infected with TSWV, and visible disease symptoms were observed on the fruits. Transmission electron microscopy, deep sequencing of small RNAs, and molecular mutation diagnosis were used to analyze the pathological features and genetic polymorphism of TSWV infecting tomato fruit. Typical TSWV virions were observed in the infected fruits, but not leaves from YNAU335 grown between 2021 and 2022, and cross-infection was very rarely observed. The number of mitochondria and chloroplasts increased, but the damage to the mitochondria was greater than that seen in the chloroplasts. Small RNA deep sequencing revealed the presence of multiple viral species in TSWV-infected and non-infected tomato samples grown between 2014-2022. Many virus species, including TSWV, which accounted for the largest proportion, were detected in the TSWV-infected tomato leaves and fruit. However, a variety of viruses other than TSWV were also detected in the non-infected tissues. The amino acids of TSWV nucleocapsid proteins (NPs) and movement proteins (MPs) from diseased fruits of YNAU335 picked in 2021-2022 were found to be very diverse. Compared with previously identified NPs and MPs from TSWV isolates, those found in this study could be divided into three types: non-resistance-breaking, resistance-breaking, and other isolates. The number of positive clones and a comparison with previously identified amino acid mutations suggested that mutation F at AA118 of the MP (GenBank OL310707) is likely the key to breaking the resistance to TSWV, and this mutation developed only in the infected fruit of YNAU335 grown in 2021 and 2022.

4.
Genes (Basel) ; 14(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628673

RESUMO

Although thaumatin-like proteins (TLPs) are involved in resistance to a variety of fungal diseases, whether the TLP5 and TLP6 genes in tomato plants (Solanum lycopersicum) confer resistance to the pathogenesis of soil-borne diseases has not been demonstrated. In this study, five soil-borne diseases (fungal pathogens: Fusarium solani, Fusarium oxysporum, and Verticillium dahliae; bacterial pathogens: Clavibacter michiganense subsp. michiganense and Ralstonia solanacearum) were used to infect susceptible "No. 5" and disease-resistant "S-55" tomato cultivars. We found that SlTLP5 and SlTLP6 transcript levels were higher in susceptible cultivars treated with the three fungal pathogens than in those treated with the two bacterial pathogens and that transcript levels varied depending on the pathogen. Moreover, the SlTLP5 and SlTLP6 transcript levels were much higher in disease-resistant cultivars than in disease-susceptible cultivars, and the SlTLP5 and SlTLP6 transcript levels were higher in cultivars treated with the same fungal pathogen than in those treated with bacterial pathogens. SlTLP6 transcript levels were higher than SlTLP5. SlTLP5 and SlTLP6 overexpression and gene-edited transgenic mutants were generated in both susceptible and resistant cultivars. Overexpression and knockout increased and decreased resistance to the five diseases, respectively. Transgenic plants overexpressing SlTLP5 and SlTLP6 inhibited the activities of peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) after inoculation with fungal pathogens, and the activities of POD, SOD, and APX were similar to those of fungi after infection with bacterial pathogens. The activities of CAT were increased, and the activity of ß-1,3-glucanase was increased in both the fungal and bacterial treatments. Overexpressed plants were more resistant than the control plants. After SlTLP5 and SlTLP6 knockout plants were inoculated, POD, SOD, and APX had no significant changes, but CAT activity increased and decreased significantly after the fungal and bacterial treatments, contrary to overexpression. The activity of ß-1,3-glucanase decreased in the treatment of the five pathogens, and the knocked-out plants were more susceptible to disease than the control. In summary, this study contributes to the further understanding of TLP disease resistance mechanisms in tomato plants.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Peroxidase , Superóxido Dismutase , Peroxidases , Ascorbato Peroxidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...