Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 14473-14481, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157311

RESUMO

A persistent spin helix with equal strength of the Rashba and Dresselhaus spin-orbit coupling (SOC) is expected for future spintronic devices due to the suppression of spin relaxation. In this work we investigate the optical tuning of the Rashba and Dresselhaus SOC by monitoring the spin-galvanic effect (SGE) in a GaAs/Al0.3Ga0.7As two dimensional electron gas. An extra control light above the bandgap of the barrier is introduced to tune the SGE excited by a circularly polarized light below the bandgap of GaAs. We observe different tunability of the Rashba- and Dresselhaus-related SGE currents and extract the ratio of the Rashba and Dresselhaus coefficients. It decreases monotonously with the power of the control light and reaches a particular value of ∼-1, implying the formation of the inverse persistent spin helix state. By analyzing the optical tuning process phenomenologically and microscopically, we reveal greater optical tunability of the Rashba SOC than that of the Dresselhaus SOC.

2.
ACS Nano ; 16(2): 3221-3230, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143162

RESUMO

Introducing the chiral spacers to two-dimensional (2D) lead halide perovskites (LHPs) enables them to exhibit circularly polarized photoluminescence (CPPL), which could have applications in chiral-optics and spintronics. Despite that a great deal of effort has been made in this field, the reported polarization degree of CPPL at ambient conditions is still very limited, and the integration of multiple functionalities also remains to be explored. Here we report the structures, CPPL, and piezoelectric energy harvesting properties of chiral 2D LHPs, [R-1-(4-bromophenyl)ethylaminium]2PbI4 (R-[BPEA]2PbI4) and [S-1-(4-bromophenyl)ethylaminium]2PbI4 (S-[BPEA]2PbI4). Our results show that these chiral perovskites are direct bandgap semiconductors and exhibit CPPL centered at ∼513 nm with a maximum degree of polarization of up to 11.0% at room temperature. In addition, the unique configurational arrangement of the chiral spacers is found to be able to reduce the interlayer π-π interactions and consequently result in strong electron-phonon coupling. Furthermore, the intrinsic chirality of both R-[BPEA]2PbI4 and S-[BPEA]2PbI4 enables them to be piezoelectric active, and their composite films can be applied to generate voltages and currents up to ∼0.6 V and ∼1.5 µA under periodic impacting with a strength of 2 N, respectively. This work not only reports a high degree of CPPL but also demonstrates piezoelectric energy harvesting behavior for realizing multifunctionalities in chiral 2D LHPs.

3.
Adv Mater ; 32(11): e1906536, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32027430

RESUMO

Internal magnetic moments induced by magnetic dopants in MoS2 monolayers are shown to serve as a new means to engineer valley Zeeman splitting (VZS). Specifically, successful synthesis of monolayer MoS2 doped with the magnetic element Co is reported, and the magnitude of the valley splitting is engineered by manipulating the dopant concentration. Valley splittings of 3.9, 5.2, and 6.15 meV at 7 T in Co-doped MoS2 with Co concentrations of 0.8%, 1.7%, and 2.5%, respectively, are achieved as revealed by polarization-resolved photoluminescence (PL) spectroscopy. Atomic-resolution electron microscopy studies clearly identify the magnetic sites of Co substitution in the MoS2 lattice, forming two distinct types of configurations, namely isolated single dopants and tridopant clusters. Density functional theory (DFT) and model calculations reveal that the observed enhanced VZS arises from an internal magnetic field induced by the tridopant clusters, which couples to the spin, atomic orbital, and valley magnetic moment of carriers from the conduction and valence bands. The present study demonstrates a new method to control the valley pseudospin via magnetic dopants in layered semiconducting materials, paving the way toward magneto-optical and spintronic devices.

4.
Nano Lett ; 19(5): 3138-3142, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30945874

RESUMO

Atomically thin magnets are the key element to build up spintronics based on two-dimensional materials. The surface nature of two-dimensional ferromagnet opens up opportunities to improve the device performance efficiently. Here, we report the intrinsic ferromagnetism in atomically thin monolayer CrBr3, directly probed by polarization resolved magneto-photoluminescence. The spontaneous magnetization persists in monolayer CrBr3 with a Curie temperature of 34 K. The development of magnons by the thermal excitation is in line with the spin-wave theory. We attribute the layer-number-dependent hysteresis loops in thick layers to the magnetic domain structures. As a stable monolayer material in air, CrBr3 provides a convenient platform for fundamental physics and pushes the potential applications of the two-dimensional ferromagnetism.

5.
Nat Commun ; 9(1): 753, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467477

RESUMO

Transition metal dichalcogenides have valley degree of freedom, which features optical selection rule and spin-valley locking, making them promising for valleytronics devices and quantum computation. For either application, a long valley polarization lifetime is crucial. Previous results showed that it is around picosecond in monolayer excitons, nanosecond for local excitons and tens of nanosecond for interlayer excitons. Here we show that the dark excitons in two-dimensional heterostructures provide a microsecond valley polarization memory thanks to the magnetic field induced suppression of valley mixing. The lifetime of the dark excitons shows magnetic field and temperature dependence. The long lifetime and valley polarization lifetime of the dark exciton in two-dimensional heterostructures make them promising for long-distance exciton transport and macroscopic quantum state generations.

6.
Nat Commun ; 8(1): 802, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986559

RESUMO

Atomically thin monolayer transition metal dichalcogenides possess coupling of spin and valley degrees of freedom. The chirality is locked to identical valleys as a consequence of spin-orbit coupling and inversion symmetry breaking, leading to a valley analog of the Zeeman effect in presence of an out-of-plane magnetic field. Owing to the inversion symmetry in bilayers, the photoluminescence helicity should no longer be locked to the valleys. Here we show that the Zeeman splitting, however, persists in 2H-MoTe2 bilayers, as a result of an additional degree of freedom, namely the layer pseudospin, and spin-valley-layer locking. Unlike monolayers, the Zeeman splitting in bilayers occurs without lifting valley degeneracy. The degree of circularly polarized photoluminescence is tuned with magnetic field from -37% to 37%. Our results demonstrate the control of degree of freedom in bilayer with magnetic field, which makes bilayer a promising platform for spin-valley quantum gates based on magnetoelectric effects.Monolayer transition metal dichalcogenides host a valley splitting in magnetic field analogous to the Zeeman effect. Here, the authors report that the Zeeman splitting still persists in bilayers of MoTe2 without lifting the valley degeneracy, due to spin-valley-layer coupling.

7.
Nanoscale Res Lett ; 9(1): 279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936166

RESUMO

We experimentally studied the magneto-photocurrents generated by direct interband transition in InAs/GaSb type II superlattice. By varying the magnetic field direction, we observed that an in-plane magnetic field induces a photocurrent linearly proportional to the magnetic field; however, a magnetic field tilted to the sample plane induces a photocurrent presenting quadratic magnetic field dependence. The magneto-photocurrents in both conditions are insensitive to the polarization state of the incident light. Theoretical models involving excitation, relaxation and Hall effect are utilized to explain the experimental results.

8.
Nanoscale Res Lett ; 8(1): 298, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799946

RESUMO

The in-plane optical anisotropy (IPOA) in InAs/GaSb superlattices has been studied by reflectance difference spectroscopy (RDS) at different temperatures ranging from 80 to 300 K. We introduce alternate GaAs- and InSb-like interfaces (IFs), which cause the symmetry reduced from D 2d to C 2v . IPOA has been observed in the (001) plane along [110] and [1[Formula: see text]0] axes. RDS measurement results show strong anisotropy resonance near critical point (CP) energies of InAs and GaSb. The energy positions show red shift and RDS intensity decreases with the increasing temperature. For the superlattice sample with the thicker InSb-like IFs, energy positions show red shift, and the spectra exhibit stronger IPOA. The excitonic effect is clearly observed by RDS at low temperatures. It demonstrates that biaxial strain results in the shift of the CP energies and IPOA is enhanced by the further localization of the carriers in InSb-like IFs.

9.
Nanoscale Res Lett ; 6(1): 210, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21711728

RESUMO

The strong anisotropic forbidden transition has been observed in a series of InGaAs/GaAs single-quantum well with well width ranging between 3 nm and 7 nm at 80 K. Numerical calculations within the envelope function framework have been performed to analyze the origin of the optical anisotropic forbidden transition. It is found that the optical anisotropy of this transition can be mainly attributed to indium segregation effect. The effect of uniaxial strain on in-plane optical anisotropy (IPOA) is also investigated. The IPOA of the forbidden transition changes little with strain, while that of the allowed transition shows a linear dependence on strain.PACS 78.66.Fd, 78.20.Bh, 78.20.Fm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...