Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 191(2): 957-973, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36459464

RESUMO

The photosynthetic mechanism of crop yields in fluctuating light environments in the field remains controversial. To further elucidate this mechanism, we conducted field and simulation experiments using maize (Zea mays) plants. Increased planting density enhanced the light fluctuation frequency and reduced the duration of daily high light, as well as the light-saturated photosynthetic rate, biomass, and yield per plant. Further analysis confirmed a highly significant positive correlation between biomass and yield per plant and the duration of photosynthesis related to daily high light. The simulation experiment indicated that the light-saturated photosynthetic rate of maize leaves decreased gradually and considerably when shortening the daily duration of high light. Under an identical duration of high light exposure, increasing the fluctuation frequency decreased the light-saturated photosynthetic rate slightly. Proteomic data also demonstrated that photosynthesis was mainly affected by the duration of high light and not by the light fluctuation frequency. Consequently, the current study proposes that an appropriate duration of daily high light under fluctuating light environments is the key factor for greatly improving photosynthesis. This is a promising mechanism by which the photosynthetic productivity and yield of maize can be enhanced under complex light environments in the field.


Assuntos
Proteômica , Zea mays , Fotossíntese , Biomassa , Folhas de Planta , Luz
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498855

RESUMO

A leaf structure with high porosity is beneficial for lateral CO2 diffusion inside the leaves. However, the leaf structure of maize is compact, and it has long been considered that lateral CO2 diffusion is restricted. Moreover, lateral CO2 diffusion is closely related to CO2 pressure differences (ΔCO2). Therefore, we speculated that enlarging the ΔCO2 between the adjacent regions inside maize leaves may result in lateral diffusion when the diffusion resistance is kept constant. Thus, the leaf structure and gas exchange of maize (C4), cotton (C3), and other species were explored. The results showed that maize and sorghum leaves had a lower mesophyll porosity than cotton and cucumber leaves. Similar to cotton, the local photosynthetic induction resulted in an increase in the ΔCO2 between the local illuminated and the adjacent unilluminated regions, which significantly reduced the respiration rate of the adjacent unilluminated region. Further analysis showed that when the adjacent region in the maize leaves was maintained under a steady high light, the photosynthesis induction in the local regions not only gradually reduced the ΔCO2 between them but also progressively increased the steady photosynthetic rate in the adjacent region. Under field conditions, the ΔCO2, respiration, and photosynthetic rate of the adjacent region were also markedly changed by fluctuating light in local regions in the maize leaves. Consequently, we proposed that enlarging the ΔCO2 between the adjacent regions inside the maize leaves results in the lateral CO2 diffusion and supports photosynthesis in adjacent regions to a certain extent under fluctuating light.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/farmacologia , Luz , Fotossíntese , Folhas de Planta , Difusão
3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499324

RESUMO

Chlorophyll a fluorescence induction kinetics (CFI) is an important tool that reflects the photosynthetic function of leaves, but it remains unclear whether it is affected by leaf structure. Therefore, in this study, the leaf structure and CFI curves of sunflower and sorghum seedlings were analyzed. Results revealed that there was a significant difference between the structures of palisade and spongy tissues in sunflower leaves. Their CFI curves, measured on both the adaxial and abaxial sides, also differed significantly. However, the differences in the leaf structures and CFI curves between both sides of sorghum leaves were not significant. Further analysis revealed that the differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves almost disappeared due to reduced incident light scattering and refraction in the leaf tissues; more importantly, changes in the CFI curves of the abaxial side were greater than the adaxial side. Compared to leaves grown under full sunlight, weak light led to decreased differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves; of these, changes in the CFI curves and palisade tissue structure on the adaxial side were more obvious than on the abaxial side. Therefore, it appears that large differences in sunflower leaf structures may affect the shape of CFI curves. These findings lay a foundation for enhancing our understanding of CFI from a new perspective.


Assuntos
Helianthus , Clorofila A/análise , Folhas de Planta/química , Fotossíntese , Fluorescência , Clorofila/análise
4.
Photosynth Res ; 150(1-3): 313-326, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34086146

RESUMO

Low light conditions not only induce leaf senescence, but also photosynthetic acclimation. This study aimed to determine whether plants exhibit photosynthetic acclimation during low-light-induced leaf senescence. The influences of shading on leaf senescence and photosynthetic acclimation were explored in post-anthesis maize plants. The results showed that whole shading (WS) of maize plants accelerated leaf senescence, whereas partial shading (PS) slowed leaf senescence. WS led to larger decreases in the photosynthetic rate (Pn) and stomatal conductance (Gs) compared to those of the PS treatment. Interestingly, chlorophyll a fluorescence (ChlF) demonstrated that the absorption flux (ABS/CSo) and trapped energy flux (TRo/CSo) per cross section in leaves remained relatively stable under WS, whereas significant decreases in the active PSII reaction centers (RC/CSo) resulted in considerable increases in absorption (ABS/RC) and trapped energy flux (TRo/RC) per reaction center. ABS/CSo, TRo/CSo, ABS/RC, and TRo/RC increased markedly under PS, whereas there were slight decreases in RC/CSo and electron transport activity. These results suggest that the PS treatment resulted in obvious improvements in the absorption and capture of light energy in shaded leaves. Further analysis demonstrated that both the WS and PS treatments resulted in a greater decrease in the activity of Rubisco compared to that of phosphoenolpyruvate carboxylase (PEPC). Moreover, PEPC activity in PS was maintained at a high level. Consequently, the current study proposed that the improvement of the absorption and capture of light energy and the maintenance of PEPC activity of mesophyll cells were due to photosynthetic acclimation of low-light-induced leaf senescence in maize plants. In addition, the rate of senescence of vascular bundle cells in maize leaves exceeded that of mesophyll cells under low light, showing obvious tissue specificity.


Assuntos
Fotossíntese , Zea mays , Aclimatação , Clorofila , Clorofila A , Folhas de Planta , Senescência Vegetal
5.
Photosynth Res ; 149(1-2): 57-68, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32783175

RESUMO

Plants in their natural environment are often exposed to fluctuating light because of self-shading and cloud movements. As changing frequency is a key characteristic of fluctuating light, we speculated that rapid light fluctuation may induce rapid photosynthetic responses, which may protect leaves against photoinhibition. To test this hypothesis, maize seedlings were grown under fluctuating light with various frequencies (1, 10, and 100 cycles of fluctuations/10 h), and changes in growth, chlorophyll content, gas exchange, chlorophyll a fluorescence, and P700 were analyzed carefully. Our data show that though the growth and light-saturated photosynthetic rate were depressed by rapidly fluctuating light, photosynthesis induction was clearly speeded up. Furthermore, more rapid fluctuation of light strikingly reduced the chlorophyll content, while thermal dissipation was triggered and enhanced. The chlorophyll a fluorescence induction kinetics and P700 absorption results showed that the activities of both photosystem II and photosystem I decreased as the frequency of the fluctuating light increased. In all treatments, the light intensities of the fluctuating light were kept constant. Therefore, rapid light fluctuation frequency itself induced the acceleration of photosynthetic induction and the enhancement of photoprotection in maize seedlings, which play important roles in protecting photosynthetic apparatus against fluctuating high light to a certain extent.


Assuntos
Adaptação Ocular/fisiologia , Adaptação Fisiológica , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Luz Solar/efeitos adversos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Estresse Fisiológico
6.
Physiol Plant ; 171(1): 125-136, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32981119

RESUMO

To copy with highly heterogeneous light environment, plants can regulate photosynthesis locally and systemically, thus, maximizing the photosynthesis of individual plants. Therefore, we speculated that local weak light may induce the improvement of photosynthesis in adjacent illuminated leaves in plants. In order to test this hypothesis, maize seedlings were partially shaded, and gas exchange, chlorophyll a fluorescence and biochemical analysis were carefully assessed. It was shown that local shading exacerbated the declines in the photosynthetic rates, chlorophyll contents, electron transport and carbon assimilation-related enzyme activities in shaded leaves as plants growth progressed. While, the decreases of these parameters in adjacent illuminated leaves of shaded plants were considerably alleviated compared to the corresponding leaves of control plants. Obviously, the photosynthesis in adjacent illuminated leaves in shaded plants was improved by local shading, and the improvement in adjacent lower leaves was larger than that in adjacent upper ones. As growth progressed, local shading induced higher abscisic acid contents in shaded leaves, but it alleviated the increase in the abscisic acid contents in adjacent leaves in shaded plants. Moreover, the difference in sugar content between shaded leaves and adjacent illuminated ones was gradually increased. Consequently, local weak light suppressed the photosynthesis in shaded leaves, while it markedly improved the photosynthesis of adjacent illuminated ones. Sugar gradient between shaded leaves and adjacent illuminated ones might play a key role in photosynthetic regulation of adjacent illuminated leaves.


Assuntos
Plântula , Zea mays , Clorofila , Clorofila A , Luz , Fotossíntese , Folhas de Planta
7.
Front Plant Sci ; 11: 1248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922423

RESUMO

There are considerable variations in the percentage loss of hydraulic conductivity (PLC) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (K l) via precise control over PLC under variable ΔΨ (water potential differential between soil and leaf) conditions to maintain the -m/b constant (-m: the sensitivity of stomatal conductance to VPD; b: reference stomatal conductance at 1.0 kPa VPD), where VPD is vapor pressure deficit. We used Populus euphratica, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of VPD, stomatal conductance (g s), g s responses to VPD, mid-day minimum leaf water potential (Ψ lmin), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the -m/b ratio was almost constant (=0.6) across all the sites; 2) the average Ψ 50 (the xylem water potential with 50% loss of hydraulic conductivity) was -1.63 MPa, and mid-day PLC ranged from 62 to 83%; 3) there were tight correlations between Ψ 50 and wood density/leaf specific hydraulic conductivity (k l) and between specific hydraulic conductance sensitivity to water potential [d(k s)/dln(-Ψ)] and specific hydraulic conductivity (k s). A modified hydraulic model was applied to investigate the relationship between g s and VPD under variable ΔΨ and K l conditions. It was concluded that P. euphratica was able to control PLC in order to maintain a relatively constant -m/b under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to VPD were well coordinated in order to maintain relatively water homeostasis of P. euphratica in the desert. Model simulations could explain the wide variations of PLC across and within woody species that are often observed in the field.

8.
Plant Physiol Biochem ; 129: 71-76, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29803075

RESUMO

Na+ distribution is one of the most important strategies for plant resistance to salt stress. The way of Na+ compartmentation in different aged leaves has been controversial, especially at the cell and sub-cellular level. The roles that Na+ and K+/Na+ play the key role in photosynthesis need to be further verified. In this study, using two cucumber cultivars Cucumis sativus L. cv. zhongnong 8 (ZN8, relatively salt tolerant) and Cucumis sativus L.cv. Jinchun 4 (JC4, salt sensitive) as experiment material, we analyzed the mode of ion compartmentation of Na+ in organelles in different aged leaves and determined which factors (the organelles' Na+ or K+/Na+) affect leaf photosynthesis, using high-pressure freezing and freeze-substitution, Ultrathin sectioning technique and X-ray. The main results: 1. The sub-cellular trends of Na+ accumulation was cell wall > vacuole > cytoplasm > chloroplasts; 2. The Na+ accumulation in cytoplasm and chloroplasts was similar in different aged leaves and in seedlings of different salt tolerance cultivars; 3. The K+/Na+ ratio is the main factor that affects the photosynthesis of the same aged leaves in our experiment. A weak capacity for ion compartmentation may be an important reason leading to salt sensitivity.


Assuntos
Cucumis sativus/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo , Sódio/metabolismo , Clorofila A/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/fisiologia , Microanálise por Sonda Eletrônica , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Potássio/metabolismo , Estresse Salino , Plântula/efeitos dos fármacos , Plântula/fisiologia , Sódio/farmacologia , Frações Subcelulares/metabolismo
9.
J Plant Physiol ; 194: 61-71, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101723

RESUMO

Drought slows net photosynthetic rate (AN) but increases water use efficiency (WUE). Farmers give an artificial drought pretreatment to some crops in the early growth stage and find that yield increases accompanying with the improvement of WUE. We conducted well-watered, non-drought, mild drought and moderate drought pretreatments of potted cotton cultivars. The aims of the present study were to analyse the importance of mesophyll conductance (gm) as a factor that may simultaneously improve AN and WUE under drought pretreatment conditions, and to analyse the role of anatomical structure and biochemical mechanism in the variability of gm. Our results showed that significant variability of gm estimated by gas exchange and chlorophyll fluorescence was observed between non-drought pretreatment and drought pretreatment associated with change in AN and WUE. There was great difference in anatomical structure and expression of aquaporins (GhAQP1) among all the treatments. In addition, expression of carbonic anhydrase (CA) may not be important in the regulation of gm under drought pretreatment conditions. We concluded that the variability of gm offers a potential target for improving leaf AN and WUE simultaneously by the regulation of anatomical structure and GhAQP1.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , Transpiração Vegetal/fisiologia , Água/metabolismo , Aquaporina 1/genética , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Secas , Células do Mesofilo/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia
10.
Plant Sci ; 229: 23-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443830

RESUMO

During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange.


Assuntos
Euonymus/fisiologia , Fotossíntese , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Syringa/fisiologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Ritmo Circadiano/fisiologia , Tamanho do Órgão , Fótons , Estômatos de Plantas/anatomia & histologia , Fatores de Tempo
11.
J Photochem Photobiol B ; 137: 31-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24935099

RESUMO

In the field, close planting inevitably causes mutual shading and depression of leaf photosynthesis. To clarify the regulative mechanisms of photosynthesis under these conditions, the effects of planting density on leaf structure, gas exchange and proteomics were carefully studied in field-grown sorghum. In the absence of mineral deficiency, (1) close planting induced a significant decrease in light intensity within populations, which further resulted in much lower stomatal density and other anatomical characteristics associated with shaded leaves; (2) sorghum grown at high planting density had a lower net photosynthetic rate and stomatal conductance than those grown at low planting density; (3) approximately 62 protein spots changed their expression levels under the high planting density conditions, and 22 proteins associated with photosynthesis were identified by mass spectrometry. Further analysis revealed the depression of photosynthesis caused by mutual shading involves the regulation of leaf structure, absorption and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. Additionally, heat shock protein and oxygen-evolving enhancer protein play important roles in photoprotection in field-grown sorghum. A model for the regulation of photosynthesis under mutual shading was suggested based on our results.


Assuntos
Luz , Fotossíntese/efeitos da radiação , Sorghum/metabolismo , Sorghum/efeitos da radiação , Ar , Clorofila/metabolismo , Clorofila A , Relação Dose-Resposta à Radiação , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Sorghum/citologia , Sorghum/crescimento & desenvolvimento , Temperatura
12.
Plant Physiol ; 155(3): 1416-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21245193

RESUMO

Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Sorghum/fisiologia , Sorghum/efeitos da radiação , Clorofila/metabolismo , Clorofila A , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Fluorescência , Gases/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/efeitos da radiação , Fotossíntese/fisiologia , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos da radiação , Sorghum/anatomia & histologia
13.
Physiol Plant ; 137(3): 225-34, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19781004

RESUMO

To explore the mechanisms underlying water regulation in clonal plants and its effects on carbon assimilation under water stress, we studied the responses of water status, gas exchange and abscisic acid (ABA) contents to water stress in leaves of pairs of strawberry ramets that consist of mother and daughter ramets. There was a greater decrease in photosynthetic rates (P(n)) and stomatal conductance (G(s)) in the disconnected mother ramets than the connected mother ramets upon exposure to water stress, indicating that water stress in mother ramets was alleviated by water translocation from the well-watered daughter ramets. Conversely, the connected mother ramets displayed enhanced symptoms of water stress when the connected daughter ramets were exposed to water deficit. The mother ramets had lower water potential (psi(w)) due to their stronger osmotic adjustment than in well-watered daughter ramets; this resulted in water flow from the connected daughter ramets to mother ramets, thus alleviating water stress of mother ramets. During soil drying, there was a striking increase in ABA concentrations in leaves of the disconnected mother ramets, whereas leaf bulk ABA was much lower in the connected and water-stressed mother ramets than that in the drought-affected mother ramets in the disconnected group. In this study, though G(s) was linearly correlated with leaf bulk ABA and psi(w), G(s) in water-stressed mother ramets in disconnected group exhibited less sensitivity to the variation in leaf bulk ABA and psi(w) than that in connected and water-stressed mother ramets. Taken together, these results indicate that: (1) the flux of water translocation between the connected ramets is determined by a water potential gradient; (2) water translocation between connected ramets helps to keep sensitivity of G(s) to ABA and psi(w) in drought-affected ramets, thereby benefit to effectively maintain the homeostasis of leaf water status and (3) the improvements in P(n) in water-stressed ramets due to water translocation from well-watered ramets suggest the advantages of physiological integration in clonal plants in environments with heterogeneous water distribution.


Assuntos
Fragaria/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Ácido Abscísico/análise , Desidratação , Transpiração Vegetal/fisiologia , Solo/análise
14.
J Integr Plant Biol ; 50(5): 559-64, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18713423

RESUMO

Allelopathy of Ageratina adenophora plays an important role in its invasion. However, we have little knowledge of its allelpathic effects on ferns. In Petri dish bioassays, the inhibitory potential of aqueous leachates from roots, stems and leaves of A. adenophora was studied on the spore germination and gametophyte development of Macrothelypteris torresiana. All leachates inhibited the spore germination and growth of the first rhizoid of M. torresiana and inhibitory effects increased with increasing leachate concentrations. Root leachates proved most inhibitory. Gametophyte rhizoids of M. torresiana treated with stem and leaf leachates of A. adenophora were erect, which was similar to those of the control. However, gametophyte rhizoids of M. torresiana treated with root leachates of A. adenophora were erect, but also curving or swollen. Moreover, curving and swollen rhizoids increased with increasing concentrations. As time went by, rhizoids treated with root leachates were not so curved and the swelling almost disappeared. Possible causes are discussed in the present study. The increasing concentrations of leaf leachates also delayed the stages of gametophyte development. With the treatment of root leachates, the delay was more obvious. Thus A. adenophora inhibited the spore germination and gametophyte development of M. torresiana and the root leachates were most inhibitory.


Assuntos
Ageratina/fisiologia , Gleiquênias/crescimento & desenvolvimento , Células Germinativas/citologia , Germinação/fisiologia , Esporos/fisiologia , Gleiquênias/citologia , Fatores de Tempo
15.
Artigo em Inglês | MEDLINE | ID: mdl-17287570

RESUMO

Gas exchange and chlorophyll a fluorescence in soybean plants were investigated to explore the effects of iron deficiency on photosynthesis and photosystem II function in vivo. Iron deficiency induced a drastic decrease in net photosynthesis (Pn). Compared with normal plants, the maximal quantum yield of PSII photochemistry (psipo) in iron-deficient plants was only slightly lower; whereas, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA-(Psio) and quantum yield of electron transport beyond QA (psiEo) were significantly depressed. Iron deficiency also caused a clear enhancement of the relative variable fluorescence at K step (VK). When exposed to light, iron-deficient plants had considerably lower efficiency of excitation energy capture by open PSII reaction centers (Fv'/Fm'), quantum yield of PSII electron transport (PhiPSII), and photochemical quenching coefficient (qP), but markedly higher non-photochemical quenching (NPQ). In addition, post-illumination transient increase in chlorophyll fluorescence was clearly enhanced in iron-deficient plants. Basing on these data, we suggest that both the donor and the acceptor sides of PSII complex were damaged by iron deficiency; cyclic electron transport around PSI in iron-deficient soybean plants might play an important role in inducing the excitation energy dissipation and meeting the demand for extra ATP as a compensation for the loss of phosphorylation capability.


Assuntos
Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/metabolismo , Clorofila/química , Clorofila/metabolismo , Condutividade Elétrica , Fluorescência , Distúrbios do Metabolismo do Ferro/fisiopatologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Glycine max/fisiologia
16.
Artigo em Chinês | MEDLINE | ID: mdl-15627692

RESUMO

Gas exchange, chlorophyll a fluorescence and HPLC analysis were used to explore photosynthesis and dissipation of excited energy in soybean leaves from emergence to full development. During leaf development, both photosynthetic rate and stomata conductance increased gradually, whereas the increase in stomata conductance significantly lagged behind that of photosynthetic rate. Considering stomatal limiting value, it can be easily deduced that photosynthesis was considerably limited by low stomatal conductance during leaf development. Though the maximum quantum yield of photosystem II (PSII) photochemistry (F(v)/F(m)) was quite high at the stages of leaf development, it is appreciably lower than that in fully developed leaves. Reversible decrease in F(v)/F(m) occurred caused by high irradiance during daily courses at all stages of leaf development, indicating that no severe photoinhibition occurred when exposed to high light. Under high irradiance, a substantial increase in the actual PSII efficiency (Phi(PSII)) together with a marked decreased in non-photochemical quenching (NPQ) occurred during the process of leaf development. Compared with the values obtained at 9:00 AM, Phi(PSII) in developing leaves was drastically down-regulated after midday, whereas NPQ was enhanced significantly. Compared with fully expanded leaves, those developing leaves, with higher xanthophyll pool size, exhibited a much higher ratio of zeaxanthin (Z) + antheraxanthin (A) to Chl under irradiation. In addition, the relative xanthophyll pool size (V+A+Z)/Chl was found to decrease with leaf development. Our experiments revealed that the decline of xanthophyll cycle pool during leaf development was due to the fact that the chlorophyll content increased faster than the xanthophyll cycle pigment content. We suggest that as soon as leaf emerged, photoprotective mechanism was developed preferentially which can effectively protect leaves against excessive irradiance. Thermal dissipation depending on xanthophyll cycle is a very important photoprotective mechanism for dealing with high irradiance during leaf development.


Assuntos
Glycine max/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Clorofila/análise , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...