Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 197: 108110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768875

RESUMO

Ciliophora, an exceptionally diverse lineage of unicellular eukaryotes, exhibits a remarkable range of species richness across classes in the ciliate Tree of Life. In this study, we have acquired transcriptome and genome data from 40 representative species in seven ciliate classes. Utilizing 247 genes and 105 taxa, we devised a comprehensive phylogenomic tree for Ciliophora, encompassing over 60 % of orders and constituting the most extensive dataset of ciliate species to date. We established a robust phylogenetic framework that encompasses ambiguous taxa and the major classes within the phylum. Our findings support the monophyly of each of two subphyla (Postciliodesmatophora and Intramacronucleata), along with three subclades (Protocruzia, CONTHREEP, and SAPML) nested within Intramacronucleata, and elucidate evolutionary positions among the major classes within the phylum. Drawing on the robust ciliate Tree of Life and three constraints, we estimated the radiation of Ciliophora around 1175 Ma during the middle of the Proterozoic Eon, and most of the ciliate classes diverged from their sister lineage during the latter half of this period. Additionally, based on the time-calibrated tree and species richness pattern, we investigated net diversification rates of Ciliophora and its classes. The global net diversification rate for Ciliophora was estimated at 0.004979 species/Ma. Heterogeneity in net diversification rates was evident at the class level, with faster rates observed in Oligohymenophorea and Spirotrichea than other classes within the subclades CONTHREEP and SAPML, respectively. Notably, our analysis suggests that variations in net diversification rates, rather than clade ages, appear to contribute to the differences in species richness in Ciliophora at the class level.


Assuntos
Cilióforos , Filogenia , Cilióforos/genética , Cilióforos/classificação , Transcriptoma , Evolução Molecular , Especiação Genética
2.
Sci Data ; 11(1): 323, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548755

RESUMO

Balantidium ctenopharyngodoni is identified as the sole ciliate species that exclusively resides within the hindgut of grass carp with high prevalence and intensity. In this study, the successful cultivation of B. ctenopharyngodoni enabled us to collect enough cells for genome sequencing. Consequently, we acquired a high-quality genome assembly spanning 68.66 Mb, encompassing a total of 22,334 nanochromosomes. Furthermore, we predicted 29,348 protein-coding genes, and 95.5% of them was supported by the RNA-seq data. The trend of GC content in the subtelomeric regions of single-gene chromosomes was similar to other ciliates containing nanochromosomes. A large number of genes encoding carbohydrate-binding modules with affinities for starch and peptidoglycans was identified. The identification of mitochondrion-related organelles (MROs) within genome indicates its well-suited adaptation to the anaerobic conditions in the hindgut environment. In summary, our results will offer resources for understanding the genetic basis and molecular adaptations of balantidia to hindgut of herbivorous fish.


Assuntos
Balantidium , Genoma de Protozoário , Animais , Balantidium/genética , Sequência de Bases , Cromossomos , Filogenia , Carpas
3.
Nat Commun ; 15(1): 1438, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365793

RESUMO

The Tibetan Plateau supplies water to nearly 2 billion people in Asia, but climate change poses threats to its aquatic microbial resources. Here, we construct the Tibetan Plateau Microbial Catalog by sequencing 498 metagenomes from six water ecosystems (saline lakes, freshwater lakes, rivers, hot springs, wetlands and glaciers). Our catalog expands knowledge of regional genomic diversity by presenting 32,355 metagenome-assembled genomes that de-replicated into 10,723 representative genome-based species, of which 88% were unannotated. The catalog contains nearly 300 million non-redundant gene clusters, of which 15% novel, and 73,864 biosynthetic gene clusters, of which 50% novel, thus expanding known functional diversity. Using these data, we investigate the Tibetan Plateau aquatic microbiome's biogeography along a distance of 2,500 km and >5 km in altitude. Microbial compositional similarity and the shared gene count with the Tibetan Plateau microbiome decline along with distance and altitude difference, suggesting a dispersal pattern. The Tibetan Plateau Microbial Catalog stands as a substantial repository for high-altitude aquatic microbiome resources, providing potential for discovering novel lineages and functions, and bridging knowledge gaps in microbiome biogeography.


Assuntos
Microbiota , Humanos , Tibet , Microbiota/genética , Lagos , Rios , Água
4.
Nucleic Acids Res ; 52(D1): D747-D755, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930867

RESUMO

Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.


Assuntos
Bases de Dados Genéticas , Eucariotos , Fungos , Genoma , Animais , Códon , Eucariotos/genética , Fungos/genética , Plantas/genética
5.
Microorganisms ; 11(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37894156

RESUMO

Microbial communities are essential components of aquatic ecosystems and are widely employed for the detection, protection, and restoration of water ecosystems. The polyurethane foam unit (PFU) method, an effective and widely used environmental monitoring technique, has been improved with the eDNA-PFU method, offering efficiency, rapidity, and standardization advantages. This research aimed to explore the colonization process of microbial communities within PFUs using eDNA-PFU technology. To achieve this, we conducted ten-day monitoring and sequencing of microbial communities within PFUs in a stable and controlled artificial aquatic ecosystem, comparing them with water environmental samples (eDNA samples). Results showed 1065 genera in eDNA-PFU and 1059 in eDNA, with eDNA-PFU detecting 99.95% of eDNA-identified species. Additionally, the diversity indices of bacteria and eukaryotes in both methods showed similar trends over time in the colonization process; however, relative abundance differed. We further analyzed the colonization dynamics of microbes in eDNA-PFU and identified four clusters with varying colonization speeds. Notably, we found differences in colonization rates between bacteria and eukaryotes. Furthermore, the Molecular Ecological Networks (MEN) showed that the network in eDNA-PFU was more modular, forming a unique microbial community differentiated from the aquatic environment. In conclusion, this study, using eDNA-PFU, comprehensively explored microbial colonization and interrelationships in a controlled mesocosm system, providing foundational data and reference standards for its application in aquatic ecosystem monitoring and beyond.

6.
Animals (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238038

RESUMO

Carbohydrates are the main source of nutrition for B. coli, supplying energy for cell growth and development. The research aimed at investigating the mechanism of starch on the growth and replication of B. coli. Single-cell separation was used to isolate single trophozoites of B. coli under a stereomicroscope, transcriptomic profiling was conducted based on the SMART-seq2 single-cell RNA-seq method. Comparative genomic analysis was performed on B. coli and eight other ciliates to obtain specific and expanded gene families of B. coli. GO and KEGG enrichment analysis were used to analyze the key genes of B. coli under the action of starch in the present study. The results of single-cell RNA-seq depicts starch affected the growth and replication of B. coli in two ways: (1) the cell cycle was positively promoted by the activation of the cAMP/PKA signaling pathway via glycolysis; (2) the cell autophagy was suppressed through the PI3K/AKT/mTOR pathway. Genes involved in endocytosis, carbohydrate utilization, and the cAMP/PKA signaling pathway were highly enriched in both specific and expanded gene families of B. coli. Starch can be ingested and hydrolyzed into glucose, in turn affecting various biological processes of B. coli. The molecular mechanism of the effect of starch on the growth and proliferation of B. coli by promoting cell cycle and inhibiting the autophagy of trophozoites has been elucidated in our study.

7.
Mol Ecol Resour ; 23(5): 1182-1193, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912756

RESUMO

Ciliates are a large group of ubiquitous and highly diverse single-celled eukaryotes that play an essential role in the functioning of microbial food webs. However, their genomic diversity is far from clear due to the need to develop cultivation methods for most species, so most research is based on wild organisms that almost invariably contain contaminants. Here we establish an integrated Genome Decontamination Pipeline (iGDP) that combines homology search, telomere reads-assisted and clustering approaches to filter contaminated ciliate genome assemblies from wild specimens. We benchmarked the performance of iGDP using genomic data from a contaminated ciliate culture and the results showed that iGDP could recall 91.9% of the target sequences with 96.9% precision. We also used a synthetic dataset to offer guidelines for the application of iGDP in the removal of various groups of contaminants. Compared with several popular metagenome binning tools, iGDP could show better performance. To further validate the effectiveness of iGDP on real-world data, we applied it to decontaminate genome assemblies of three wild ciliate specimens and obtained their genomes with high quality comparable to that of previously well-studied model ciliate genomes. It is anticipated that the newly generated genomes and the established iGDP method will be valuable community resources for detailed studies on ciliate biodiversity, phylogeny, ecology and evolution. The pipeline (https://github.com/GWang2022/iGDP) can be implemented automatically to reduce manual filtering and classification and may be further developed to apply to other microeukaryotes.


Assuntos
Descontaminação , Genômica , Metagenoma , Filogenia , Eucariotos
8.
Microorganisms ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985247

RESUMO

Hot springs are some of the most special environments on Earth. Many prokaryotic and eukaryotic microbes have been found to live in this environment. The Himalayan geothermal belt (HGB) has numerous hot springs spread across the area. Comprehensive research using molecular techniques to investigate eukaryotic microorganisms is still lacking; investigating the composition and diversity of eukaryotic microorganisms such as protists in the hot spring ecosystems will not only provide critical information on the adaptations of protists to extreme conditions, but could also give valuable contributions to the global knowledge of biogeographic diversity. In this study, we used high-throughput sequencing to illuminate the diversity and composition pattern of protist communities in 41 geothermal springs across the HGB on the Tibetan Plateau. A total of 1238 amplicon sequence variants (ASVs) of protists were identified in the hot springs of the HGB. In general, Cercozoa was the phylum with the highest richness, and Bacillariophyta was the phylum with the highest relative abundance in protists. Based on the occurrence of protist ASVs, most of them are rare. A high variation in protist diversity was found in the hot springs of the HGB. The high variation in protist diversity may be due to the different in environmental conditions of these hot springs. Temperature, salinity, and pH are the most important environmental factors that affect the protist communities in the surface sediments of the hot springs in the HGB. In summary, this study provides the first comprehensive study of the composition and diversity of protists in the hot springs of the HGB and facilitates our understanding of the adaptation of protists in these extreme habitats.

9.
Sci Adv ; 9(8): eadd6550, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812318

RESUMO

The giant single-celled eukaryote, Spirostomum, exhibits one of the fastest movements in the biological world. This ultrafast contraction is dependent on Ca2+ rather than ATP and therefore differs to the actin-myosin system in muscle. We obtained the high-quality genome of Spirostomum minus from which we identified the key molecular components of its contractile apparatus, including two major Ca2+ binding proteins (Spasmin 1 and 2) and two giant proteins (GSBP1 and GSBP2), which act as the backbone and allow for the binding of hundreds of spasmins. The evidence suggests that the GSBP-spasmin protein complex is the functional unit of the mesh-like contractile fibrillar system, which, coupled with various other subcellular structures, provides the mechanism for repetitive ultrafast cell contraction and extension. These findings improve our understanding of the Ca2+-dependent ultrafast movement and provide a blueprint for future biomimicry, design, and construction of this kind of micromachine.


Assuntos
Actinas , Cilióforos , Miosinas , Contração Muscular/fisiologia
10.
J Eukaryot Microbiol ; 70(2): e12950, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36177660

RESUMO

The Peritrichia is a speciose and morphologically distinctive assemblage of ciliated protists that was first observed by Antonie van Leeuwenhoek over 340 years ago. In the last two decades, the phylogenetic relationships of this group have been increasingly debated as morphological and molecular analyses have generated contrasting conclusions, mainly owing to limited sampling. In the present study, we performed expanded phylogenetic analyses of 152 sessilid peritrichs collected from 14 different provinces of China and 141 SSU rDNA peritrich sequences from GenBank. The results of the analyses revealed new divergent relationships between and within major clades that challenge the morphological classification of this group including, (1) the recovery of four major phylogenetically divergent clades in the monophyletic order Sessilida, (2) aboral structures such as the stalk and spasmoneme were evolutionary labile, (3) the stalk or/and spasmoneme was lost in each divergent clade indicating that parallel evolution occurred in sessilid peritrichs and (4) the life cycle and habit drive the diversity of aboral structures as well as diversification and evolution in peritrichs.


Assuntos
Cilióforos , Oligoimenóforos , Filogenia , DNA de Protozoário/genética , DNA Ribossômico/genética
11.
Comput Struct Biotechnol J ; 19: 1928-1932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897985

RESUMO

Ciliates contain two kinds of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC) in a single cell. The MAC usually have fragmented chromosomes. These fragmented chromosomes, capped with telomeres at both ends, could be gene size to several megabases in length among different ciliate species. So far, no telomere-to-telomere assembly of entire MAC genome in ciliate species has been finished. Development of the third generation sequencing technologies allows to generate sequencing reads up to megabases in length that could possibly span an entire MAC chromosome. Taking advantage of the ultra-long Nanopore reads, we established a simple strategy for the complete assembly of ciliate MAC genomes. Using this strategy, we assembled the complete MAC genomes of two ciliate species Tetrahymena thermophila and Tetrahymena shanghaiensis, composed of 181 and 214 chromosomes telomere-to-telomere respectively. The established strategy as well as the high-quality genome data will provide a useful approach for ciliate genome assembly, and a valuable community resource for further biological, evolutionary and population genomic studies.

12.
Microorganisms ; 9(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467569

RESUMO

In the giant ciliate Stentor coeruleus, oral apparatus (OA) regeneration is an experimentally tractable regeneration paradigm that occurs via a series of morphological steps. OA regeneration is thought to be driven by a complex regulatory system that orchestrates the temporal expression of conserved and specific genes. We previously identified a S. coeruleus-specific gene (named SCSG1) that was significantly upregulated during the ciliogenesis stages of OA regeneration, with an expression peak at the stage of the first OA cilia appearance. We established a novel RNA interference (RNAi) method through cyanobacteria Synechocystis sp. PCC6803 feeding in S. coeruleus. The expression of SCSG1 gene was significantly knocked down by using this method and induced abnormal ciliogenesis of OA regeneration in S. coeruleus, suggesting that SCSG1 is essential for OA regeneration in S. coeruleus. This novel RNAi method by cyanobacterial feeding has potential utility for studying other ciliates.

13.
Microorganisms ; 8(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266460

RESUMO

Scuticociliatosis is an invasive external or systemic infection caused by ciliated protozoa, mainly those within the subclass Scuticociliatia (scuticociliates). Many scuticociliates are fish pathogens, including Miamiensis avidus, Philasterides dicentrarchi, Pseudocohnilembus persalinus, and Uronema marinum. Our previous study showed that hemolysis-related genes derived from bacteria through horizontal gene transfer (HGT) may contribute to virulence in P. persalinus. Hemorrhagic lesions are a common feature of scuticociliatosis, but it is not known whether other scuticociliates also have bacteria-derived hemolysis-related genes. In this study, we constructed a high-quality macronuclear genome of another typical pathogenic scuticociliate, U. marinum. A total of 105 HGT genes were identified in this species, of which 35 were homologs of hemolysis-related genes (including hemolysin-like genes) that had previously been identified in P. persalinus. Sequencing of an additional five species from four scuticociliate families showed that bacteria-derived hemolysis-related genes (especially hemolysin-like genes) are widely distributed in scuticociliates. Based on these findings, we suggest that hemolysin-like genes may have originated before the divergence of scuticociliates.

14.
Gene ; 743: 144624, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224274

RESUMO

The giant ciliate Stentor coeruleus (S. coeruleus) is a suitable model organism for studying morphogenesis and regeneration at the single-cell level. It contains a prominent structure on the anterior end of the cell, known as the oral apparatus (OA). OA can be induced to shed by urea treatment and then new OA regenerates via a series of defined morphological events and the cell resumes normal feeding activity. We identified OA constituents in S. coeruleus by mass spectrometry. A total of 882 OA-associated proteins were identified; the homologs of 181 of these are known OA constituents in other organisms. The expression pattern of OA-associated genes during regeneration was investigated using single-cell transcriptome sequencing. The expression of most OA-associated genes was high during regeneration, indicating their stable expression after OA shedding. We also identified OA-associated differentially expressed genes that may be involved in regulating OA reconstruction. In summary, this study gives preliminary insight into the molecular basis of OA in S. coeruleus.


Assuntos
Cilióforos/fisiologia , Genes de Protozoários/genética , Proteínas de Protozoários/metabolismo , Regeneração , Espectrometria de Massas , Proteômica , Proteínas de Protozoários/genética , Análise de Sequência de RNA , Análise de Célula Única
15.
Mol Phylogenet Evol ; 143: 106687, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740334

RESUMO

Rumen ciliates are a specialized group of ciliates exclusively found in the anaerobic, carbohydrate-rich rumen microenvironment. However, the molecular and mechanistic basis of the physiological and behavioral adaptation of ciliates to the rumen microenvironment is undefined. We used single-cell transcriptome sequencing to explore the adaptive evolution of three rumen ciliates: two entodiniomorphids, Entodinium furca and Diplodinium dentatum; and one vestibuliferid, Isotricha intestinalis. We found that all three species are members of monophyletic orders within the class Litostomatea, with E. furca and D. dentatum in Entodiniomorphida and I. intestinalis in Vestibuliferida. The two entodiniomorphids might use H2-producing mitochondria and the vestibuliferid might use anaerobic mitochondria to survive under strictly anaerobic conditions. Moreover, carbohydrate-active enzyme (CAZyme) genes were identified in all three species, including cellulases, hemicellulases, and pectinases. The evidence that all three species have acquired prokaryote-derived genes by horizontal gene transfer (HGT) to digest plant biomass includes a significant enrichment of gene ontology categories such as cell wall macromolecule catabolic process and carbohydrate catabolic process and the identification of genes in common between CAZyme and HGT groups. These findings suggest that HGT might be an important mechanism in the adaptive evolution of ciliates to the rumen microenvironment.


Assuntos
Cilióforos/genética , Rúmen/parasitologia , Transcriptoma , Adaptação Fisiológica , Anaerobiose , Animais , Metabolismo dos Carboidratos , Celulases/genética , Cilióforos/classificação , Cilióforos/fisiologia , Transferência Genética Horizontal , Glicosídeo Hidrolases/genética , Filogenia , Poligalacturonase/genética , RNA-Seq , Rúmen/metabolismo , Análise de Célula Única
16.
J Eukaryot Microbiol ; 66(6): 954-965, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31188517

RESUMO

Ciliates are unicellular eukaryotes with separate germline and somatic genomes and diverse life cycles, which make them a unique model to improve our understanding of population genetics through the detection of genetic variations. However, traditional sequencing methods cannot be directly applied to ciliates because the majority are uncultivated. Single-cell whole-genome sequencing (WGS) is a powerful tool for studying genetic variation in microbes, but no studies have been performed in ciliates. We compared the use of single-cell WGS and bulk DNA WGS to detect genetic variation, specifically single nucleotide polymorphisms (SNPs), in the model ciliate Tetrahymena thermophila. Our analyses showed that (i) single-cell WGS has excellent performance regarding mapping rate and genome coverage but lower sequencing uniformity compared with bulk DNA WGS due to amplification bias (which was reproducible); (ii) false-positive SNP sites detected by single-cell WGS tend to occur in genomic regions with particularly high sequencing depth and high rate of C:G to T:A base changes; (iii) SNPs detected in three or more cells should be reliable (an detection efficiency of 83.4-97.4% was obtained for combined data from three cells). This analytical method could be adapted to measure genetic variation in other ciliates and broaden research into ciliate population genetics.


Assuntos
Variação Genética , Genoma de Protozoário , Tetrahymena thermophila/genética , Polimorfismo de Nucleotídeo Único , Análise de Célula Única , Sequenciamento Completo do Genoma
17.
PLoS Biol ; 17(6): e3000294, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158217

RESUMO

A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei-the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])-within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp-exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes.


Assuntos
Genômica/métodos , Especificidade da Espécie , Tetrahymena/genética , Evolução Biológica , Evolução Molecular , Éxons , Genoma de Protozoário , Íntrons , Proteínas de Repetições Ricas em Leucina , Filogenia , Proteínas/genética , Tetrahymena/metabolismo
18.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810209

RESUMO

Ciliates are a large and diverse group of unicellular organisms characterized by having the following two distinct type of nuclei within a single cell: micronucleus (MIC) and macronucleus (MAC). Although the genomes of several ciliates in different groups have been sequenced, comparative genomics data for multiple species within a ciliate genus are not yet available. Here we collected the genome information and comparative genomics analysis results for 10 species in the Tetrahymena genus, including the previously sequenced model organism Tetrahymena thermophila and 9 newly sequenced species, and constructed a genus-level comparative analysis platform, the Tetrahymena Comparative Genomics Database (TCGD). Genome sequences, transcriptomic data, gene models, functional annotation, ortholog groups and synteny maps were built into this database and a user-friendly interface was developed for searching, visualizing and analyzing these data. In summary, the TCGD (http://ciliate.ihb.ac.cn) will be an important and useful resource for the ciliate research community.


Assuntos
Bases de Dados Genéticas , Genômica , Tetrahymena/genética , Genoma de Protozoário , Macronúcleo/genética , Sintenia/genética
19.
J Eukaryot Microbiol ; 66(2): 212-220, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29893449

RESUMO

Resting cyst formation is a remarkable survival strategy used by ciliates in response to the adverse environmental conditions. However, the mechanisms underlying encystment are poorly understood. Here, the genetic basis of encystment in Colpoda aspera was examined through RNA sequencing to identify transcriptome-wide changes in gene expression between vegetative and encystment stages. After de novo assembly, 49,543 transcripts were identified. Gene annotation and pathway mapping analysis revealed marked changes in biosynthesis, energy metabolism, and autophagy pathways during cyst formation. In addition, some differentially regulated genes were predicted to function in the interconnected cAMP, AMPK, mTOR, and PI3K/AKT signaling pathways, potentially forming a regulatory network for encystment. The present study conducted a large-scale assessment of Colpoda aspera genomic resources and provides new insight into the molecular mechanisms underlying cyst formation.


Assuntos
Cilióforos/fisiologia , Genes de Protozoários , Transcriptoma , Cilióforos/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA
20.
Mol Phylogenet Evol ; 132: 25-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496843

RESUMO

Peritrichia is a large and distinctive assemblage of ciliated protists that was first observed by Antonie van Leeuwenhoek over 340 years ago. In the last two decades the evolutionary relationships of this subclass have been increasingly debated as morphological and molecular analyses have generated contrasting conclusions. In this study, we provide genomic-scale data from 12 typical representatives. We combine taxon- and gene-rich phylogenomic analyses, with up to 151 genes (43,956 amino acid residues) from 18 freshwater, brackish and marine isolates in order to assess the systematics and evolutionary history of the Peritrichia. The main findings were: (1) the subclass Peritrichia originates from the end of the Proterozoic to the Cambrian; (2) the monophyletic Peritrichia is sister to the Peniculia (represented by Paramecium) within the class Oligohymenophorea; (3) spasmin plays a significant role in peritrich evolution: we detected the spasmin gene in target ciliates and traced the molecular evolution of spasmin, a key spasmoneme component, together with phylogenetic relationships and morphology of the peritrichs. These findings provide evidence that spasmin is an important molecule to illustrate the phylogenetic position of Peritrichia within the class Oligohymenophorea, the monophyly of Peritrichia, and the diverse and rapid evolution of sessilid peritrichs.


Assuntos
Oligoimenóforos/classificação , Oligoimenóforos/genética , Filogenia , Proteínas Contráteis/genética , Evolução Molecular , Variação Genética , Genômica , Proteínas de Protozoários/genética , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...