Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930961

RESUMO

Metal-organic frameworks have demonstrated great capacity in catalytic CO2 reduction due to their versatile pore structures, diverse active sites, and functionalization capabilities. In this study, a novel electrocatalytic framework for CO2 reduction was designed and implemented using 2D coordination network-type transition metal-hexahydroxytricyclic quinazoline (TM-HHTQ) materials. Density functional theory calculations were carried out to examine the binding energies between the HHTQ substrate and 10 single TM atoms, ranging from Sc to Zn, which revealed a stable distribution of metal atoms on the HHTQ substrate. The majority of the catalysts exhibited high selectivity for CO2 reduction, except for the Mn-HHTQ catalysts, which only exhibited selectivity at pH values above 4.183. Specifically, Ti and Cr primarily produced HCOOH, with corresponding 0.606 V and 0.236 V overpotentials. Vanadium produced CH4 as the main product with an overpotential of 0.675 V, while Fe formed HCHO with an overpotential of 0.342 V. Therefore, V, Cr, Fe, and Ti exhibit promising potential as electrocatalysts for carbon dioxide reduction due to their favorable product selectivity and low overpotential. Cu mainly produces CH3OH as the primary product, with an overpotential of 0.96 V. Zn primarily produces CO with a relatively high overpotential of 1.046 V. In contrast, catalysts such as Sc, Mn, Ni, and Co, among others, produce multiple products simultaneously at the same rate-limiting step and potential threshold.

2.
Phys Chem Chem Phys ; 26(2): 1376-1384, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38112129

RESUMO

The rational design of high-performance anode materials is crucial for the development of rechargeable Na-ion batteries (NIBs) and K-ion batteries (KIBs). In this study, based on density functional theory (DFT) calculations, we have systematically investigated the possibility of a bilayer triazine-based covalent organic framework (bilayer TCOF) as an anode for NIBs and KIBs. The calculation of the electronic band structure shows that the bilayer TCOF is a direct band gap semiconductor with a band gap of 2.01 eV. After the adsorption of Na/K at the most favorable sites, the bilayer TCOF transitions from a semiconductor to a metal state, guaranteeing good electronic conductivity. The low diffusion barriers of the bilayer TCOF are 0.45 and 0.26 eV, respectively, indicating a fast diffusion rate of Na/K ions. In addition, the bilayer TCOF has a theoretical storage capacity of up to 628 mA h g-1. Finally, it is found that the average voltage of the bilayer TCOF for NIBs and KIBs is 0.53 and 0.48 V, respectively. Based on these results, we can conclude that the bilayer TCOF may be a suitable anode material for NIBs and KIBs.

3.
ACS Appl Mater Interfaces ; 14(39): 44859-44868, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153955

RESUMO

Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a challenge. Here, we performed first-principles computational studies on the phase stability, thermodynamic stability, and ionic transport properties of LiMXO4F (M-X = Al-P and Mg-S) used as cathode coatings. We find that the candidate coatings are thermodynamically metastable and can be synthesized experimentally. The coating materials possess high oxidative stability, with the materials predicted to decompose above 4.2 V, suggesting that they have good electrochemical stability under a high-voltage cathode. In addition, the candidate coatings exhibit significant chemical stability when in contact with oxide cathodes. Finally, we have studied the Li-ion transport paths and migration barriers of LiMXO4F (M-X = Al-P and Mg-S) and calculated the low migration barriers to be 0.19 and 0.09 eV, respectively. Our findings indicate that LiMXO4F (M-X = Al-P and Mg-S) are promising cathode coatings, among which LiAlPO4F has been experimentally confirmed. The theoretical cathode coating computational methods presented here can be extended to the solid-state battery system.

4.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744295

RESUMO

The formations of long-period superstructures strongly influence the properties of Al-rich L10-TiAl intermetallic alloys. To soundly understand the role of the superstructures in the alloys, fundamentals about them have to be known. In the present work, the structural, elastic, electronic and thermodynamic properties of h- and r-Al2Ti long-period superstructures under pressure up to 30 GPa were systematically investigated using first-principles calculations based on density functional theory. The pressure dependence of structural parameters, single-crystal elastic constants, polycrystalline elastic modulus, Cauchy pressures and elastic anisotropy were successfully calculated and discussed. The total and partial densities of states at different pressures were also successfully calculated and discussed. Furthermore, combining with quasi-harmonic approximation, the effects of the pressure on the temperature dependent volume, isothermal bulk modulus, thermal expansion coefficient, heat capacity and Gibbs free energy difference were successfully obtained and discussed. Our results were consistent with the available experimental and theoretical values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...