Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1701: 464071, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37236051

RESUMO

This study verified the feasibility of using a subtraction model to characterize the non-polar stationary phases (including C4, C8, and phenyl-type) in supercritical fluid chromatography (SFC). The model with 6 terms was expressed as log α = Î·'H + Î¸'P + ß'A + α'B + κ'C + σ'S, where a term θ'P indicating dipole or induced dipole interaction was intentionally supplemented. Ethylbenzene and SunFire C8 were respectively defined as the reference solute and column. A 7-step modeling procedure was proposed: in the first 6 steps, except σ'S, by the use of a bidirectional fitting method, other parameters were calculated based on the equation: log α = log (ki/kref) ≈ η'H + Î¸'P + ß'A + α'B + κ'C; and in the 7th step, residual analysis was employed to describe the σ'S term according to the equation: σ'S = log αexp. - log αpre. Furthermore, six columns that were not involved in modeling process and 12 compounds with unknown retention were used for methodology validation. It showed good predictions of log k, as demonstrated by adjusted determination coefficient (R2adj) from 0.9927 to 0.9998 (column) and from 0.9940 to 0.9999 (compound), respectively. The subtraction model emphasized the contribution of dipole or induced dipole interaction to the retention in SFC, and it obtained the σ'S term through residual analysis. Moreover, it made reasonable physical-chemical sense as the linear solvation energy relationship (LSER) model did, with the distinct advantages of better fitting and more accurate prediction. This study provided some new insights into the characterization of non-polar stationary phases in SFC.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos
2.
J Chromatogr A ; 1690: 463781, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36638687

RESUMO

Fundamental research on supercritical fluid chromatography (SFC) has gained considerable interest, with many studies focusing on its retention mechanism based on the linear solvation energy relationship (LSER) model. In this paper, a series of alkylsiloxane-bonded stationary phases were specifically designed and synthesized, then evaluated using the mobile phase composed of CO2 with 10% (v/v) methanol. The study demonstrated the close relationship between the interactions (manner and magnitude) of stationary phases and the C-chain length, bonding density and the endcapping treatment. All C8 phases provide positive e, v and negative s, whose magnitude was regularly affected by bonding density. It was worth mentioning the non-endcapped C8 phases could provide H-bonding (positive a and b) by reducing the bonding density of the alkyl chain. Once it was endcapped, the interaction manner did not vary with bonding density adjustment. The non-endcapped C4 phases with higher bonding density could establish additional dispersion interaction (positive v). It can be seen that two synthesis strategies, 1) non-endcapped, long C-chain (C8) combined with low bonding density, and 2) non-endcapped, short C-chain (C4) combined with high bonding density, can obtain the alkylsiloxane-bonded stationary phases (C8-1 and C4-3) to provide both polar and dispersion interactions, showing different separation selectivity. Furthermore, the LSER model with ionic terms was applied to evaluate partial C8 columns, and its rationality was verified. The non-endcapped C8 showed great d+ values, which originated from the silanol groups. C8SCX also possessed a great d+ value due to the benzenesulfonic acid groups. A remarkable result showed that C8SAX exhibited prominent d- and d+ values simultaneously due to the combined effect of silanol and quaternary ammonium groups, which indicates the unique selectivity when separating ionic compounds. This study provides in-depth insights into the retention mechanism of alkylsiloxane-bonded stationary phases in SFC, as well as a reference for the design of SFC stationary phases.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Metanol/química , Silanos , Íons
3.
J Pharm Biomed Anal ; 218: 114864, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35690038

RESUMO

In this study, quality evaluations of Hedyotis diffusa (H. diffusa) batches by rapid fingerprint analysis based on supercritical fluid chromatography (SFC) were accomplished. Abundant chemical components of H. diffusa were effectively extracted by optimal supercritical fluid extraction conditions (20 % MeOH as modifier, 45 °C, 300 bar and 60 min). Then, the extract was separated by SFC on a Torus 1-AA column (100 × 3.0 mm i.d., 1.7 µm) within 10 min by gradient elution increasing from 5 % to 45 % modifier (MeOH containing 0.05 % TFA) at 1.2 mL/min, 30 °C and 2000 psi. The SFC approach exhibited short analysis time, while maintaining good peak shape and resolution. Seven major compounds were further identified by SFC coupled with tandem mass spectrometer to be phenylpropanoid, iridoids and anthraquinones. Finally, fingerprint analysis of 10 batches of H. diffusa by the developed SFC method was accomplished. The similarity values were between 0.894 and 0.968, indicating quality differences of H. diffusa from depending on origin and harvest year exist. The result demonstrates the feasibility of the SFC in batch quality evaluation of H. diffusa.


Assuntos
Cromatografia com Fluido Supercrítico , Hedyotis , Antraquinonas , Cromatografia com Fluido Supercrítico/métodos , Hedyotis/química , Iridoides , Espectrometria de Massas em Tandem/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-34906822

RESUMO

The separation of structural analogues in natural products has always been one of the challenges in separation science, where supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an unconventional but potential solution. In this study, a preparative two-dimensional chiral SFC (2D cSFC) method that was established with two kinds of CSPs was applied in the isolation of the aliphatic acid derivatives in Piper kadsura (P. kadsura). The RPLC unseparated peaks of two samples A and B of P. kadsura were evenly scattered on the CSP-1 column while they clustered into two groups on the CSP-2 column by SFC. There was impressively complementary selectivity between CSP-1 and CSP-2, which were used for construction of 2D cSFC. The first dimension (1D) separation with CSP-1 fractionated the sample A into six parts by a heart-cutting method and the sample B into nine parts for a comprehensive 2D analysis; then 29 and 71 peaks were respectively found in these parts in the second dimension (2D) separation with CSP-2. Further through 2D preparative separation, 19 high purity components were obtained, and the chemical structures of two of them were confirmed, including a novel unsaturated aliphatic acid compound (8Z,10Z)-12-methoxyheptadeca-8,10-dienoic acid and a known octadecadienoic acid lactone Lactariolide. The 2D cSFC method presented the superiority of separating the achiral compounds of complex samples.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Medicamentos de Ervas Chinesas/química , Ácidos Graxos/isolamento & purificação , Piper/química , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/análise , Ácidos Graxos/química , Estereoisomerismo
5.
J Sep Sci ; 44(19): 3530-3539, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34342132

RESUMO

A preparative supercritical fluid chromatography method for the separation of Piper kadsura obtained five phenylamide compounds, which had the same structural skeleton, but changed in the number and position of methoxyl substituents. To improve the separation selectivity of these structural analogues, silica, phenyl, and chiral stationary phases were screened. Only through the combination of Chiral C and phenyl columns could the separation of the five phenylamides be solved. The two-step strategy using preparative supercritical fluid chromatography presented good orthogonality that ensured the purity of the phenylamides. Then, an ultra-high-performance supercritical fluid chromatography hyphened tandem mass spectrometry method was developed, and the fragmentation pattern of phenylamides was summarized. It mainly cleaved in the amide bond to produce the fragment ion, which could help to judge the substituent positions. Twenty-eight possible molecular weights of hydroxyl and methoxyl substituted phenylamides were calculated and screened. Nine compounds were extracted in three [M + H]+ ions at m/z 284.13, 314.13, and 344.13, including five purified compounds and the other four positional or trans-cis phenylamide isomers in low content. The methods developed in this research were useful in the separation and characterization of phenylamide analogues.


Assuntos
Amidas , Cromatografia com Fluido Supercrítico/métodos , Piper/química , Espectrometria de Massas em Tandem/métodos , Amidas/análise , Amidas/química , Amidas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas
6.
Artigo em Inglês | MEDLINE | ID: mdl-33906077

RESUMO

In this paper, an effective strategy of using acetonitrile-methanol-water as mobile phase was developed to achieve acceptable peak shape of steviol glycosides in reversed-phase liquid chromatography (RPLC). The change of elution profiles of rebaudioside A (RA) was systematically investigated. Two classical distributions, namely, tailing and fronting peaks resulting from injections of RA solution in range of 0.5-5 mg were both observed in a ternary eluent of acetonitrile-methanol-water (21:43:36, v/v). Next, a three-phase diagram of tailing factor (Tf) was illustrated, showing high dependence of elution profile of RA on the ternary composition. The peak shape of RA can be adjusted mainly based on the additive effect, that is, acetonitrile is more strongly adsorbed to the stationary phase than RA in the pure weak solvent (H2O). Therefore, with the increase of acetonitrile concentration in the ternary eluent, the RA band profiles went from being tailing to fronting shapes. At the same time, due to the large RA-RA interactions, there was anti-Langmuir adsorption isotherm in acetonitrile-water mobile phase, which is the reason for the fronting peaks of RA. It could be concluded that the way of using the ternary eluent of acetonitrile-methanol-water does control and tune the peak shape of steviol glycosides in RPLC separation.

7.
J Sep Sci ; 44(12): 2382-2390, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33835699

RESUMO

Bioactivity-guided chromatographic methods are of great significance for the isolation of the active compounds in complex samples. In this study, four anti-fungal compounds were located by activity screening and successfully isolated from a microbial fermentation sample by preparative high-performance liquid chromatography. Separation performance of columns including C18, positively charged C18, negatively charged C18 and C8 were firstly investigated. And it showed a better capacity of mixed-mode stationary phases for retention and separation. Therefore, the positively charged C18 column was used to separate the sample into several fractions, among which the active one was identified by the antifungal test. And then the active fraction was enriched and separated again by successively using the negatively charged C18 and C8 columns to obtain four compounds, which were identified as polyoxins A, K, F and H. With activity verification, four polyoxins were found to have good inhibitory effects against the three fungal plant diseases including rice sheath blight, tomato grey mould disease, and apple spot leaf disease.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/química , Antifúngicos/metabolismo , Cromatografia Líquida de Alta Pressão , Fermentação , Estrutura Molecular , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/isolamento & purificação , Nucleosídeos de Pirimidina/metabolismo
8.
J Sep Sci ; 44(10): 2020-2028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33629802

RESUMO

Developing methods for the isolation of highly polar compounds from complex samples is of great significance. In this study, three polyoxins were successfully isolated from a complex sample (PN1-1# ) by preparative high-performance liquid chromatography. Separation was carried out on five polar reversed-phase stationary phases, using pure aqueous as mobile phase, where the C18HC column can provide the best performance for PN1-1# . Next, the effects of the mobile phase composition were studied. It was found that adding NaClO4 can enhance the retention and resolution, and adding NaH2 PO4 was beneficial to maintain good peak shapes when the sample loading increased. Therefore, the optimized mobile phase consisting of 20 mmol NaH2 PO4 and 20 mmol NaClO4 (adding H3 PO4 to adjust pH 2) was used to separate PN1-1# . This method of using 100% aqueous phase can effectively improve both the retention and the solubility of polar samples. Eventually, through further purification, three compounds, namely, polyoxins B, D, and G, were obtained. This paper provided an effective and eco-friendly strategy for the preparative-scale separation of polar samples.

9.
J Chromatogr A ; 1620: 461010, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173025

RESUMO

In this paper, adsorption mechanism of triterpenoid saponins in reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) was proposed based on the study of the retention behavior of mogroside V as test substance. The change of peak shape of mogroside V and its influencing factors was first investigated. As the increase of sample loading, a tailing peak of mogroside V was observed in MeOHH2O of both two modes. It was the fronting peak in ACNH2O of HILIC while there was a transition from fronting peak to tailing peak in ACNH2O of RPLC that was largely affected by column temperature and ACN concentration. The adsorption isotherm of mogroside V in ACNH2O of RPLC was fitted by Moreau model, where a monolayer adsorption with large inter-molecular interaction was formed on the C18 surface. While in ACNH2O of HILIC, the adsorption of mogroside V was in accordance with BET model, showing multilayer adsorption behavior. In MeOHH2O of both HILIC and RPLC, there was always monolayer adsorption, which was fitted by Langmuir model. At last, by choosing the suitable chromatographic mode, controlling the key factors such as the solvent concentration and column temperature, and predicting the broadening trend of peak, three methods were screened out, namely, C18 column with 22% ACN (30 °C), Click XIon column with 90% MeOH or 70% ACN, to get mogroside V of purity greater than 98% from Siraitia grosvenorii extract. Among them, the RPLC method of 22% ACN that showed the highest loading sample per hour (1.92%) and the lowest solvent consumption emerged as the best approach.


Assuntos
Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , Adsorção , Saponinas/química , Solventes , Temperatura , Triterpenos/química
10.
J Chromatogr A ; 1614: 460700, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740031

RESUMO

In recent years, supercritical fluid chromatography (SFC) has become a powerful tool in modern analytical chemistry, and the diversity of stationary phases in SFC promotes phenyl-type phases to confront with a significant resurgence of interest. In this paper, a series of phenyl-type stationary phases with different substituted benzenes involving N-propylbenzamide (PB), 4-fluoro-N-propylbenzamide (PB-F), and 4-ethyl-N-propylbenzamide (PB-ET) were synthesized. Retention mechanism of these phases in SFC was investigated using a linear solvation energy relationship (LSER) model. The phenyl-type stationary phases with all positive parameters can provide all types of interaction, typically involving hydrogen bonding, dipole-dipole and dispersive interactions. The different benzene's substituents of the stationary phases mainly affected their hydrogen bonding and dipole-dipole interactions, which could be reflected by the angle between the solvation vectors to some extent. The k-k plot showed that the selectivity difference of phenyl-type stationary phases was closely related to the type of solute. Thus, based on twenty-five natural phenolic compounds, two systems with high orthogonality (63.49%) were constructed using three columns, namely phenyl column (PHE) × PB-F and PB × PB-F. Finally, after investigating the influence of chromatographic conditions, ten flavonoids could be separated by using PB, PB-F and PHE columns in SFC.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Fenóis/química , Derivados de Benzeno/química , Cromatografia com Fluido Supercrítico/instrumentação , Fenóis/isolamento & purificação
11.
J Chromatogr A ; 1593: 127-134, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30885402

RESUMO

Supercritical fluid chromatography (SFC) today represents an alternative technique in analytical chemistry due to its obvious benefits in kinetic performance and its complementarity to liquid chromatography. In this paper, a series of alkylsiloxane-bonded stationary phases were synthesized and evaluated to expand their SFC applications. Five kinds of non-endcapped C8 stationary phases (C8-1 to C8-5) with increasing bonding density were synthesized, and the carbon content was 3.91%, 6.07%, 7.97%, 8.65% and 9.10% respectively. Retention mechanism of the C8 phases in SFC in SFC was investigated by the use of a linear solvation energy relationship (LSER) model. Results underlined a close relationship between the bonding density of alkyl chain and the dispersion and polar interactions of the stationary phase. Complementary evaluation was studied based on the calculation of vector angle (θ), and the widest θ of 123° was found between silica and C8 with the highest bonding density. Selective diversity also existed between the two C8 phases with the highest and lowest bonding densities. In addition, the effect of modifier on the SFC mechanism was investigated. Modifiers (methanol, ethanol, isopropanol and acetonitrile) had insignificant influence on the dispersion interaction but they mainly affected the hydrogen bonding interaction by changing the LSER parameters a and b. Finally, C8 and silica columns were applied for separation of eight amide alkaloids of Piper kadsura. Silica provided better retention but limited selectivity while C8 can distinguish alkaloids different in alkyl chain, double bond and cis-trans structure. This research further contributed to demonstrate the potential of alkylsiloxane-bonded stationary phase in improving selectivity of SFC.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Siloxanas/química , Acetonitrilas/química , Álcoois/química , Ligação de Hidrogênio
12.
Se Pu ; 36(5): 474-479, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-30136489

RESUMO

A method based on preparative reversed-phase liquid chromatography (prep-RPLC) and preparative supercritical fluid chromatography (prep-SFC) was developed for the separation and purification of compounds from piper kadsura. A pretreatment method was first developed, including methanol extraction, water precipitation, petroleum ether extraction, etc. Chlorophyll and other strong polar impurities were removed from the piper kadsura samples, and the target components were enriched in petroleum ether extracts. The piper kadsura samples were separated into 18 fractions on a Unitary C18 column (250 mm×20 mm, 5 µm) with water and methanol as the mobile phases. Then, the SFC parameters, including the column, modifier, temperature, and backpressure were optimized. The optimized conditions for prep-SFC were as follows:XAmide column (250 mm×20 mm, 5 µm), methanol as the modifier, 30℃ column temperature, and 15.0 MPa backpressure. Because of the good orthogonality of RPLC and SFC, six highly pure compounds were isolated, including kadsurenone, wallichinine, denudatin B, pellitorine, 2E-decenoic acid N-isobutylamide, and futoxide.


Assuntos
Compostos Fitoquímicos/isolamento & purificação , Piper/química , Cromatografia de Fase Reversa , Cromatografia com Fluido Supercrítico , Solventes
13.
Artigo em Inglês | MEDLINE | ID: mdl-28865331

RESUMO

The goal of this study was to develop a method that utilized a hydrophilic C18 stationary phase in the preparative high performance liquid chromatography to isolate the polar part from the rhizomes of Anemarrhena asphodeloides. The results showed that an initial mobile phase of pure water for the separation could greatly increase the retention and solubility of the polar compounds at the preparative scale. Introducing polar groups on the surface of the hydrophilic C18 column together with the use of optimized mobile phase compositions improved the column separation selectivity for polar compounds. Eleven previously undescribed compounds in Anemarrhena asphodeloides were obtained, indicating that the method developed in this study would facilitate the purification and separation of the polar part of traditional Chinese medicines.


Assuntos
Anemarrhena/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Rizoma/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...