Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 108(3): e21842, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34499777

RESUMO

Glyphodes pyloalis Walker has become one of the most significant mulberry pests, and it has caused serious economic losses in major mulberry growing regions in China. Peptidoglycan recognition proteins (PGRPs) are responsible for initiating and regulating immune signalling pathways in insects. However, their roles responding to chemical pesticides is still less known. This study aimed to investigate the possible detoxication function of GpPGRP-S2 and GpPGRP-S3 in G. pyloalis in response to chlorfenapyr and phoxim. The chlorfenapyr and phoxim treatment significantly induced the expression level of GpPGRP-S3 at 48 h. In addition, the expression levels of GpPGRP-S2 and GpPGRP-S3 in the chlorfenapyr/phoxim treatment group were significantly higher in midgut than those in the control group at 48 h. The results of the survival experiment showed that silencing either GpPGRP-S2 or GpPGRP-S3 would not influence the survival rate of G. pyloalis which treated with phoxim, however, silencing GpPGRP-S2 or GpPGRP-S3 would cause G. pyloalis to be more easily killed by chlorfenapyr. The expression of carboxylesterase GpCXE1 was significantly induced by chlorfenapyr/phoxim treatment, while it was suppressed once silenced GpPGRP-S2 followed with chlorfenapyr treatment or silenced GpPGRP-S3 followed with phoxim treatment. These results might suggest that under the chlorfenapyr/phoxim treatment condition, the connection between GpPGRPs and detoxification genes in insect was induced to maintain physiological homeostasis; and these results may further enrich the mechanisms of insects challenged by insecticides.


Assuntos
Proteínas de Transporte , Inseticidas , Mariposas , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Compostos Organotiofosforados/metabolismo , Compostos Organotiofosforados/farmacologia , Controle de Pragas/métodos , Piretrinas/metabolismo , Piretrinas/farmacologia
2.
Insects ; 12(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924270

RESUMO

Glyphodes pyloalis Walker (G. pyloalis) is a serious pest on mulberry. Due to the increasing pesticide resistance, the development of new and effective environmental methods to control G. pyloalis is needed. Trehalase is an essential enzyme in trehalose hydrolysis and energy supply, and it has been considered a promising target for insect pest control. However, the specific function of trehalase in G. pyloalis has not been reported. In this study, two trehalase genes (GpTre1 and GpTre2) were identified from our previous transcriptome database. The functions of the trehalase in chitin metabolism were studied by injecting larvae with dsRNAs and trehalase inhibitor, Validamycin A. The open reading frames (ORFs) of GpTre1 and GpTre2 were 1,704 bp and 1,869 bp, which encoded 567 and 622 amino acid residues, respectively. Both of GpTre1 and GpTre2 were mainly expressed in the head and midgut. The highest expression levels of them were in 5th instar during different development stages. Moreover, knockdown both of GpTre1 and GpTre2 by the dsRNAs led to significantly decreased expression of chitin metabolism pathway-related genes, including GpCHSA, GpCDA1, GpCDA2, GpCHT3a, GpCHT7, GpCHSB, GpCHT-h, GpCHT3b, GpPAGM, and GpUAP, and abnormal phenotypes. Furthermore, the trehalase inhibitor, Validamycin A, treatment increased the expressions of GpTre1 and GpTre2, increased content of trehalose, and decreased the levels of glycogen and glucose. Additionally, the inhibitor caused a significantly increased cumulative mortality of G. pyloalis larvae on the 2nd (16%) to 6th (41.3%) day, and decreased the rate of cumulative pupation (72.3%) compared with the control group (95.6%). After the activities of trehalase were suppressed, the expressions of 6 integument chitin metabolism-related genes decreased significantly at 24 h and increased at 48 h. The expressions of GpCHSB and GpCHT-h, involved in chitin metabolism pathway of peritrophic membrane in the midgut, increased at 24 h and 48 h, and there were no changes to GpCHT3b and GpPAGM. These results reveal that GpTre1 and GpTre2 play an essential role in the growth of G. pyloalis by affecting chitin metabolism, and this provides useful information for insect pest control in the future.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33611221

RESUMO

The interaction between a host and its parasitoid is one of the most fascinating relationships of insects. Immune-related genes play crucial roles in this association. Nevertheless, until now, identification of these genes on a large scale has not received much attention. To gain insight into the parasitic effects of the endoparasitoid Aulacocentrum confusum (Hymenoptera: Braconidae) on Glyphodes pyloalis (Lepidoptera: Pyralidae) larva, which is a destructive pest of mulberry (Morus alba L.) trees in China, we presented a transcriptome dataset for uncovering immune-related genes in parasitized G. pyloalis larvae. In total, 91,118,138 and 92,778,814 clean reads were obtained from parasitized and healthy host larvae, respectively, and de novo assembly generated 57,122 unigenes. The transcriptional profile of G. pyloalis larvae was remarkably influenced by parasitism. A total of 3259 differentially expressed genes (DEGs) were identified in parasitized and nonparasitized G. pyloalis larvae and 55 genes related to immune response were screened from these DEGs. Among the 55 DEGs, 37 genes were significantly upregulated, and 18 genes were downregulated. qRT-PCR validated the sequencing results and revealed that the expression levels of selected immune-related genes depended on the parasitization and duration after parasitization. Knocking down the C type lectin gene (CTL) changed the expression of serine proteinase, serine protease inhibitor, antimicrobial peptide, prophenoloxidase activating enzymes and peroxiredoxin in G. pyloalis larvae, suggesting CTL can modulate the immune response after parasitization by A. confusum females. The present study provides a foundation for revealing the molecular mechanisms of immune response in G. pyloalis larvae when they are parasitized by A. confusum and promotes the development of novel biological control practices for G. pyloalis.


Assuntos
Himenópteros/imunologia , Lepidópteros/parasitologia , Morus/parasitologia , Animais , Genes de Insetos , Himenópteros/genética , Imunidade , Larva/imunologia , Larva/parasitologia , Lepidópteros/imunologia , Doenças das Plantas/parasitologia , Transcriptoma
4.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32365175

RESUMO

Six candidate sHSP genes were identified from the Glyphodes pyloalis transcriptome. All sHSP genes included full-length open reading frames and shared high similarity with the sequences of other lepidopteran species. These sHSP genes encoded 175-191 amino acid residues, and the predicted proteins had a molecular weight from 19.5 to 21.8 kDa. All GpsHSPs were expressed at lower levels at larval stages. All GpsHSPs were expressed at higher levels at diapaused, prepupal, or pupal stages, suggesting that sHSPs may be involved in metamorphosis in G. pyloalis. In addition to the developmental stage, extreme temperatures can induce variations in the expression of sHSPs genes. All GpsHSPs were significantly upregulated in larvae following exposure to heat shock, except GpHSP21.4 which downregulated at 4 h following exposure to the cold shock treatment. Furthermore, Starvation influenced the expression patterns of GpsHSPs as a function of the duration of food deprivation. Four GpsHSPs increased their expression with time of starvation until reaching to the peak level at 6 d of starvation. Finally, parasitism by the endoparasitoid Aulacocentrum confusum He et van Achterberg (Hymenoptera: Braconidae)-induced fluctuations in the expression of all GpsHSPs, and the expression varied with time after parasitization. Our results from this study strongly suggest functional differentiation within the sHSPs subfamily in G. pyloalis. The present study would provide further insight into the roles of sHSPs in G. pyloalis and novel avenues for promoting integrated management of this pest.


Assuntos
Proteínas de Choque Térmico Pequenas/genética , Proteínas de Insetos/genética , Mariposas/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Filogenia , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...