Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276473

RESUMO

High entropy alloy nanopowders were successfully prepared by liquid-phase reduction methods and their applications were preliminarily discussed. The prepared high entropy alloy nanopowders consisted of FeNi alloy spherical powders and NiFeCoCrY alloy spherical powders with a particle size of about 100 nm. The powders have soft magnetic properties, the saturation magnetization field strength were up to 5000 Qe and the saturation magnetization strength Ms was about 17.3 emu/g. The powders have the excellent property of low high-frequency loss in the frequency range of 0.3-8.5 GHz. When the thickness of the powders coating was 5 mm, the powders showed excellent absorption performance in the Ku band; and when the thickness of the powders coating was 10 mm; the powders showed good wave-absorbing performance in the X band. The powders have good moulding, and the powders have large specific surface area, so that the magnetic powder core composites could be prepared under low pressure and without coating insulators, and the magnetic powder cores showed excellent frequency-constant magnetization and magnetic field-constant magnetization characteristics. In the frequency range of 1~100 KHz; the µm of the magnetic powder core heat-treated at 800 °C reached 359, the µe was about 4.6 and the change rate of µe with frequency was less than 1%, meanwhile; the magnetic powder core still maintains constant µe value under the action of the external magnetic field from 0 to 12,000 A/m. The high entropy alloy nanopowders have a broad application prospect in soft magnetic composites.

2.
Adv Mater ; 32(28): e2001227, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32500583

RESUMO

Inspired by the photosynthesis process of natural plants, multifunctional transistors based on natural biomaterial chlorophyll and organic semiconductors (OSCs) are reported. Functions as photodetectors (PDs) and light-stimulated synaptic transistors (LSSTs) can be switched by gate voltage. As PDs, the devices exhibit ultrahigh photoresponsivity up to 2 × 106 A W-1 , detectivity of 6 × 1015 Jones, and Iphoto /Idark ratio of 2.7 × 106 , which make them among the best reported organic PDs. As LSSTs, important synaptic functions similar to biological synapses are demonstrated, together with a dynamic learning and forgetting process and image-processing function. Significantly, benefiting from the ultrahigh photosensitivity of chlorophyll, the lowest operating voltage and energy consumption of the LSSTs can be 10-5 V and 0.25 fJ, respectively. The devices also exhibit high flexibility and long-term air stability. This work provides a new guide for developing organic electronics based on natural biomaterials.


Assuntos
Biomimética , Clorofila/química , Transistores Eletrônicos , Eletricidade , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...